Respostas
Explicação passo-a-passo:
Lembrando que i² = - 1
(√i²) = i >> elimina a raíz
a) x² + 100 = 0
x² = - 100
x = √-100
x = √(-1).100
x = √-1.√100
x = √i².10
x = i.10
x = ± 10i
x' = + 10i ; x" = - 10i
S = {10i ; - 10i}
b) x² + 2x + 2 = 0
x = - b ± √b² - 4ac/2a
x = - 2 ± √(-2)² - 4.1.2/2.1
x = - 2 ±√4 - 8/2
x = - 2 ± √-4/2
x = - 2 ± √(-1).4/2
x = - 2 ± √-1.√4/2
x = - 2 ± √i².2/2
x = - 2 ± i.2/2
x = - 2 ± 2i/2
x' = -2+2i/2 = -1+i
x" = -2-2i/2 = -1-i
S = {- 1 + i ; - 1 - i}
c) x² + 16 = 0
x² = - 16
x = √-16
x = √(-1).16
x = √-1.√16
x = √i².4
x = i.4
x = ± 4i
x' = + 4i ; x" = - 4i
S = {4i ; - 4i}
d) x² + 4x + 5 = 0
x = - b ± √b² - 4ac/2a
x = - 4 ± √4² - 4.1.5/2.1
x = - 4 ± √16 - 20/2
x = - 4 ± √-4/2
x = - 4 ± √(-1).4/2
x = - 4 ± √-1.√4/2
x = - 4 ± √i².2/2
x = - 4 ± i.2/2
x = - 4 ± 2i/2
x' = -4+2i/2 = -2+i
x" = -4-2i/2 = -2-i
S = {- 2 + i ; - 2 - i}