Questão 3: Num triângulo retângulo, as
projeções dos catetos sobre a hipotenusa
medem 4 me 1 m, respectivamente. A altura
desse triângulo é:
(a) 5 cm
(b) 4 cm
(c) 3 cm
(d) 2 cm
(e) 1 cm
Respostas
respondido por:
0
Se as projeções (m e n) dos catetos (b e c) sobre a hipotenusa (a) medem 4 m e 1 m, temos que a soma das projeções é a medida da hipotenusa, logo:
a = m + n
a = 4 + 1
a = 5 m
Do triângulo temos as seguintes igualdades:
b² = a.n
c² = a.m
Logo, substituindo os valores, temos:
b² = 5.1
b = √5 m
c² = 5.4
c² = 20
c = √20
c = 2√5 m
A altura do triângulo ao quadrado é igual ao produto das projeções dos catetos:
h² = m.n
h² = 4.1
h² = 4
h = 2 m
A área do triângulo é:
A = a.h/2
A = 5.2/2
A = 5 m²
a = m + n
a = 4 + 1
a = 5 m
Do triângulo temos as seguintes igualdades:
b² = a.n
c² = a.m
Logo, substituindo os valores, temos:
b² = 5.1
b = √5 m
c² = 5.4
c² = 20
c = √20
c = 2√5 m
A altura do triângulo ao quadrado é igual ao produto das projeções dos catetos:
h² = m.n
h² = 4.1
h² = 4
h = 2 m
A área do triângulo é:
A = a.h/2
A = 5.2/2
A = 5 m²
Perguntas similares
5 anos atrás
5 anos atrás
7 anos atrás
7 anos atrás
7 anos atrás
8 anos atrás
8 anos atrás