Dê três exemplos de monomios expressa seu coeficiente numérico e a parte literal de cada um deles (MATEMÁTICA)
Respostas
Partes de um monômio
Um monômio é dividido em duas partes, um número, que é o coeficiente do monômio e uma variável ou o produto de variáveis (letras), inclusive suas potências, caso existam.
2x → 2 é o coeficiente desse monômio e x é sua parte literal;
3xy2 → 3 é o coeficiente desse monômio e xy2 é sua parte literal;
wz → 1 é o coeficiente desse monômio e wz é sua parte literal.
Grau de um monômio
Para um monômio com coeficientes não nulos, temos que seu grau se dará através da soma entre os expoentes da parte literal.
1/2x2y3z4 → esse é um monômio do 9º grau (2 + 3 + 4 = 9);
bcd → esse é um monômio do 3º grau (1 + 1 + 1+ = 3).
25 → esse é um monômio de grau zero (ausência da parte literal);
Entre os monômios 2x2, 1/3x3 e 0,5x5 o de maior grau é 0,5x5, pois 5 > 2 > 1/3.
Pode-se também atribuir o grau de um monômio em relação a uma de suas incógnitas. Para isso é necessário fazer menção a incógnita considerada. Vejam nos exemplos:
ab2 → esse é um monômio do 2º grau em relação a variável b;
wz3 → esse é um monômio do 1º grau em relação a variável w;
4 → esse é um monômio de grau zero pela ausência de variável (eis).
Semelhança entre monômios
Dois ou mais monômios são semelhantes quando suas partes literais são iguais.
3xy e 2/5xy são iguais, pois possuem a mesma parte literal xy;
0,5a3b2 e 10a3b2 são iguais, pois possuem a mesma parte literal a3b2;
- 4vwz, 2,3vwz e 1/3vwz são iguais, pois possuem a mesma parte literal vwz.
Adicionando e/ou subtraindo monômios
Na adição de monômios com a mesma parte literal, adicionaremos os coeficientes entre si e manteremos a parte literal.
2mn + 14mn + 5mn = 21mn (2 + 14 + 5 = 21);
2,5 x2y + 1,5x2y – 0,5x2y = 3,5x2y (2,5 + 1,5 – 0,5 = 3,5);
3/2cd3 – 1/2cd3 + 5/2cd3 = 7/2cd3 (3/2 – 1/2 + 5/2 = 7/2).
Um refrigerante custa x reais. Márcio comprou 3 refrigerantes, Aline comprou 2, Poliana comprou 4 e Arthur comprou 1. Qual é o monômio que representa quanto essas pessoas gastaram? → 3 + 2 + 4 + 1 = 10, portanto 10x.