• Matéria: Matemática
  • Autor: tonatoiav
  • Perguntado 6 anos atrás


1) Classifique as equações do Segundo Grau em completa ou incompleta; a) x2 - 8 = 0 ;b) 2x2 - 1 = 0: c) 4x2 + 6x = 0: d) 3x2 - x + 1 = 0; d) x2 - 8x + 9 = 0 *
5 pontos
A) (C, C, I, I, I)
B) (I, I, I, C, C)
C) (C, I, C, I, I)
D) (I, I, C, I, C)
2) Determine os valores dos coeficientes a, b, e c na seguinte equação: a) 2x2 - 8x + 7 = 0 *
5 pontos
A) (a=2, b=-8, c=7)
B) (a=2, b=8, c=7)
C) (a=2, b=7, c=-8)
D) (a= 2, b=-7, c=8)
3) As raizes da equação 2x2 - 8x - 10 = 0 são: *
5 pontos
A) (1 e 5)
B) ( 2 e 3)
C) ( -1 e 5)
D) (- 1 e -5)
4) Resolva a equação do Segundo Grau e assinale a alternativa correta: x2 - 5x + 6 = 0 *
5 pontos
A) (2 e -3)
B) (-2 e 3)
C) (2 e 3)
D) (-2 e -3)
5) Resolva a seguinte equação incompleta do Segundo Grau e assinale a alternativa correta: x2 - 25 = 0 *
5 pontos
A) ( +5 e -5 )
B) ( +5 e 0 )
C) ( 0 e -5 )
D) ( -5 e 0)
6) Resolva a seguinte equação incompleta do Segundo Grau e assinale a alternativa correta: 2x2 - 18 = 0 *
5 pontos
A) ( +3, -3 )
B) ( 0, -3 )
C) ( 3, 0 )
D) ( 0, +3 )


Respostas

respondido por: Makaveli1996
8

Oie, Td Bom?!

1.

■ Resposta: Opção B.

a)

Incompleta, pois b = 0.

x {}^{2}  - 8 = 0

b)

Incompleta, pois b = 0.

2x {}^{2}  - 1 = 0

c)

Incompleta, pois c = 0.

4x {}^{2}  + 6x = 0

d)

Completa, pois a = 3, b = - 1 e c = 1.

3x {}^{2}  - x + 1 = 0

e)

Completa, pois a = 1, b = - 8 e c = 9.

x {}^{2}  - 8x + 9 = 0

2.

■ Resposta: Opção A.

a)

2x {}^{2}  - 8x + 7 = 0

• Coeficientes:

a = 2 \: , \: b =  - 8 \: , \: c = 7

3.

■ Resposta: Opção C.

2x {}^{2}  - 8x - 10 = 0

x {}^{2}  - 4x - 5 = 0

x {}^{2}  + x - 5x - 5 = 0

x \: .  \: (x + 1) - 5(x + 1) = 0

(x + 1) \: . \: (x - 5) = 0

x + 1 = 0⇒x =  - 1

x - 5 = 0⇒x = 5

S = \left \{   - 1 \: , \: 5\right \}

4.

■ Resposta: Opção C.

x {}^{2}  - 5x + 6 = 0

x {}^{2}  - 2x - 3x + 6 = 0

x \: . \: (x - 2) - 3(x - 2) = 0

(x - 2) \: . \: (x - 3) = 0

x - 2 = 0⇒x = 2

x - 3 = 0⇒x = 3

S = \left \{  2 \:  ,\: 3\right \}

5.

■ Resposta: Opção A.

x {}^{2}  - 25 = 0

x {}^{2}  = 25

x = ± \sqrt{25}

x = ±5

S = \left \{   - 5 \: , \: 5\right \}

6.

■ Resposta: Opção A.

2x {}^{2}  - 18 = 0

x {}^{2}  - 9 = 0

x {}^{2}  = 9

x = ± \sqrt{9}

x = ±3

S = \left \{   - 3 \:  ,\: 3\right \}

Att. Makaveli1996


esterlopessilva20: oie,td bom? entao... vc poderia me ajudar em duas questoes minhas de geografia pfvr? claro se vc puder
respondido por: Anônimo
6

Explicação passo-a-passo:

1)

a) x² - 8 = 0 -> incompleta, b = 0

b) 2x² - 1 = 0 -> incompleta, b = 0

c) 4x² + 6x = 0 -> incompleta, c = 0

d) 3x² - x + 1 = 0 -> completa

e) x² - 8x + 9 = 0 -> completa

Letra B

2)

2x² - 8x + 7 = 0

-> ax² + bx + c = 0

• a = 2

• b = -8

• c = 7

Letra A

3)

2x² - 8x - 10 = 0

x² - 4x - 5 = 0

• S = -(-4)/1

S = 4/1

S = 4

• P = -10/2

P = -5

A soma das raízes é 4

O produto das raízes é -5

As raízes são 5 e -1

Letra C

4)

x² - 5x + 6 = 0

• S = -(-5)/1

S = 5/1

S = 5

• P = 6/1

P = 6

A soma das raízes é 5

O produto das raízes é 6

As raízes são 2 e 3

Letra C

5)

x² - 25 = 0

x² = 25

x = ±√25

• x' = 5

• x" = -5

Letra A

6)

2x² - 18 = 0

2x² = 18

x² = 18/2

x² = 9

x =±√9

• x' = 3

• x" = -3

Letra A

Perguntas similares