• Matéria: Matemática
  • Autor: maaliciacomalegria
  • Perguntado 6 anos atrás

Resolva em R, as seguintes equações biquadradas: X4 – 10x² + 9 = 0 * ± 2 e ± 3 ± 1 e ± 3 ± 1 e ± 4 0 e ± 1


willensjesusp8oxdt: digita com mais detalhes e certinho
maaliciacomalegria: houve o problema no meu teclado

Respostas

respondido por: Nasgovaskov
2

± 1 e ± 3

Explicação passo-a-passo:

 {x}^{4}  -  {10x}^{2}  + 9 = 0

Fazendo x⁴ = y² e x² = y, temos:

 {y}^{2}  - 10y + 9 = 0

∆ = {b}^{2}  - 4ac

∆ = {( - 10)}^{2}  - 4 \times 1 \times 9

∆ = 100  - 36

∆ = 64

 y= \frac{ - b ± √∆}{2}

y = \frac{ - ( - 10) ± √64}{2}

y = \frac{ 10 ± 8}{2}

y' =  \frac{10 + 8}{2}  =  \frac{18}{2}  = 9

y'' =  \frac{10 - 8}{2}  =  \frac{2}{2}  = 1

 {x}^{2}  = y' \: e \:  {x}^{2}  = y''

 {x}^{2}  = 9 \:  \:  \:  \:  \:  {x}^{2}  = 1

x =  \sqrt{9}  \:  \:  \:  \:  x =  \sqrt{1}

x = ± \: 3 \:  \:  \:  \: x = ± \: 1

respondido por: solkarped
2

✅ Após resolver os cálculos, concluímos que o conjunto solução da referida equação biquadrada é:

  \Large\displaystyle\text{$\begin{gathered}\boxed{\boxed{\:\:\:\bf S = \{-3,\,-1,\,1,\,3\}\:\:\:}}\end{gathered}$}

Seja a equação biquadrada:

        \Large\displaystyle\text{$\begin{gathered} x^{4} - 10x^{2} + 9 = 0\end{gathered}$}

Sabemos que esta equação foi gerada a partir da seguinte função biquadrada:

     \Large\displaystyle\text{$\begin{gathered} f(x) = x^{4} - 10x^{2} + 9\end{gathered}$}

Cujos coeficientes são:

                 \Large\begin{cases} a = 1\\b = -10\\c = 9\end{cases}

Para calcular as raízes da função biquadrada devemos fazer:

    \Large\displaystyle\text{$\begin{gathered} x = \pm\sqrt{\frac{-b\pm\sqrt{b^{2} - 4ac}}{2a}}\end{gathered}$}

         \Large\displaystyle\text{$\begin{gathered} = \pm\sqrt{\frac{-(-10)\pm\sqrt{(-10)^{2} - 4\cdot1\cdot9}}{2\cdot1}}\end{gathered}$}

         \Large\displaystyle\text{$\begin{gathered} = \pm\sqrt{\frac{10\pm\sqrt{100 - 36}}{2}}\end{gathered}$}

         \Large\displaystyle\text{$\begin{gathered} = \pm\sqrt{\frac{10\pm\sqrt{64}}{2}}\end{gathered}$}

         \Large\displaystyle\text{$\begin{gathered} = \pm\sqrt{\frac{10\pm8}{2}}\end{gathered}$}

Encontrando as raízes, temos:

   \LARGE\begin{cases} x' = -\sqrt{\frac{10 + 8}{2}} = -\sqrt{\frac{18}{2}} = -\sqrt{9} = -3\\x'' = -\sqrt{\frac{10 - 8}{2}} = -\sqrt{\frac{2}{2}} = -\sqrt{1} = -1\\x''' = \sqrt{\frac{10 - 8}{2}} = \sqrt{\frac{2}{2}} = \sqrt{1} = 1\\x'''' = \sqrt{\frac{10 + 8}{2}} = \sqrt{\frac{18}{2}} = \sqrt{9} = 3\end{cases}

✅ Portanto, o conjunto solução desta função é:

     \Large\displaystyle\text{$\begin{gathered} S = \{-3,\,-1,\,1,\,3\}\end{gathered}$}

\LARGE\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{\:\:\:Bons \:estudos!!\:\:\:Boa\: sorte!!\:\:\:}}}\end{gathered}$}

Saiba mais:

  1. https://brainly.com.br/tarefa/13468761
  2. https://brainly.com.br/tarefa/48160763
  3. https://brainly.com.br/tarefa/47188717
  4. https://brainly.com.br/tarefa/52080516
  5. https://brainly.com.br/tarefa/52080530
  6. https://brainly.com.br/tarefa/52080880
  7. https://brainly.com.br/tarefa/52133431
  8. https://brainly.com.br/tarefa/52569560
  9. https://brainly.com.br/tarefa/17496264
  10. https://brainly.com.br/tarefa/25709140
  11. https://brainly.com.br/tarefa/7163873
  12. https://brainly.com.br/tarefa/7205971
  13. https://brainly.com.br/tarefa/18207882
  14. https://brainly.com.br/tarefa/19938202
  15. https://brainly.com.br/tarefa/34535439
  16. https://brainly.com.br/tarefa/1044212
  17. https://brainly.com.br/tarefa/7903895
  18. https://brainly.com.br/tarefa/52932916
  19. https://brainly.com.br/tarefa/32169359
  20. https://brainly.com.br/tarefa/15250238

\Large\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{\:\:\:Observe \:o\:Gr\acute{a}fico!!\:\:\:}}}\end{gathered}$}

Anexos:
Perguntas similares