• Matéria: Matemática
  • Autor: gabrielyarcilio
  • Perguntado 6 anos atrás

Uma pessoa observa um vitral com desenho de um triângulo equilátero inscrito em um círculo de 40 cm de raio. Se a área de um triângulo equilátero é dada pela expressão ( ℓ^2 . √(3 )) /4, qual é a área do triângulo observado por essa pessoa? * 5 pontos A=34,64 cm² A= 2771 cm² A=2074 cm² A=2072 cm²

Respostas

respondido por: Jayalon
10

Explicação passo-a-passo:

A medida do lado de um triângulo inscrito na circunferência é dado, por:

l = rV3

l = 40V3 cm

Agora sim, vamos substituir o valor de l, encontrado acima na expressão para obter a área deste triângulo:

A = l^2. V3

4

A = (40V3)^2. V3

4

A = (1600 . 3) . V3

4

A = 4800 . V3

4

A = 1200. V3 - - - - > (V3 = 1,73)

A = 2076 cm^2

*Não tem essa alternativa, vê se vc não trocou algum número ao copiar as alternativas.

Perguntas similares