Observe a figura. Ela mostra uma partícula se deslocando entre dois pontos em 10s. Assinale a opção que representa as equações horárias Sx(t) e Sy(t) da partícula, considerando que a sua velocidade de deslocamento é constante. S_x(t)=-1 + 0,4.t e S_y(t)=0,4.t S_x(t)=-1 + 40.t e S_y(t)=40.t S_x(t)=0,4.t e S_y(t)=-1 + 0,4.t S_x(t)=-1 + 4.t e S_y(t)=4.t S_x(t)=-1 + 0,4.t e S_y(t)=0,8.t
Respostas
Resposta:
S_x(t)=-1 + 4.t e S_y(t)=4.t
Explicação:
Resposta:
S_x(t)=-1 + 0,4.t e S_y(t)=0,4.t (Essa é a afirmativa correta)
Explicação:
Temos agora uma partícula se movimentando em um plano xy, onde em x a partícula se move do ponto S_(0_x )=-1 ao ponto S_x=3m e em y a partícula se move do ponto S_(0_y )=0 ao ponto S_y=4. Então, para solucionar o problema, teremos que analisar primeiro o eixo x e, em seguida, o eixo y. Vamos lá:
Em X:
S_x (t)=S_(0_x ) + v_x.t
3=-1 + v_x.10
v_x=0,4 m/s
A função horária da partícula em relação ao eixo X é:
S_x (t)=-1 + 0,4.t
Em Y:
S_y (t)=S_(0_y ) + v_y. t
4=0 + v_y.10
v_y=0,4 m/s
Então, a função horária da partícula em relação ao eixo X é:
S_y (t)= 0,4.t
A figura abaixo ilustra a locomoção da partícula do seu ponto S0 ao seu ponto S. A seta preta representa a distância percorrida de um ponto a outro, enquanto as setas azuis representam o vetor velocidade, em que existe a velocidade em direção ao ponto, porém esta é decomposta em vetores paralelos aos eixos x e y, o que nos permitiu escrever as duas funções horárias.
S_x(t)=-1 + 0,4.t e S_y(t)=0,4.t