• Matéria: Matemática
  • Autor: penaalfonso05pdgztx
  • Perguntado 6 anos atrás

*VALENDO 30 PONTOS*
Desenvolva os produtos notáveis​

Anexos:

chagasantonio352: oie

Respostas

respondido por: Anônimo
2

Explicação passo-a-passo:

a)

\sf (5x^2-y)^2=(5x^2)^2-2\cdot5x^2\cdot y+y^2

\sf (5x^2-y)^2=\red{25x^4-10x^2y+y^2}

b)

\sf (b-5)^2=b^2-2\cdot b\cdot 5+5^2

\sf (b-5)^2=\red{b^2-10b+25}

c)

\sf (p-8x)^2=p^2-2\cdot p\cdot8x+(8x)^2

\sf (p-8x)^2=\red{p^2-16px+64x^2}

d)

\sf (m^2-n)^2=(m^2)^2-2\cdot m^2\cdot n+n^2

\sf (m^2-n)^2=\red{m^4-2m^2n+n^2}

e)

\sf \left(\dfrac{m}{4}-3\right)^2=\left(\dfrac{m}{4}\right)^2-2\cdot\dfrac{m}{4}\cdot3+3^2

\sf \left(\dfrac{m}{4}-3\right)^2=\red{\dfrac{m^2}{16}-\dfrac{3m}{2}+9}

f)

\sf (5x-4)^2=(5x)^2-2\cdot5x\cdot4+4^2

\sf (5x-4)^2=\red{25x^2-40x+16}

g)

\sf (3x-2)^2=(3x)^2-2\cdot3x\cdot2+2^2

\sf (3x-2)^2=\red{9x^2-12x+4}

h)

\sf \left(xy-\dfrac{x}{2}\right)^2=(xy)^2-2\cdot xy\cdot\dfrac{x}{2}+\left(\dfrac{x}{2}\right)^2

\sf \left(xy-\dfrac{x}{2}\right)^2=\red{x^2y^2-x^2y+\dfrac{x^2}{4}}


penaalfonso05pdgztx: vlw man
respondido por: Makaveli1996
2

Oie, Td Bom?!

a)

 = (5x {}^{2}  - y) {}^{2}

 = (5x {}^{2} ) {}^{2}  - 2 \: . \: 5x {}^{2} y + y {}^{2}

 = 25x {}^{4}  -1 0x {}^{2} y + y {}^{2}

b)

 = (b - 5) {}^{2}

 = b {}^{2}  - 2b \: . \: 5 + 5 {}^{2}

 = b {}^{2}  - 10b + 25

c)

 = (p - 8x) {}^{2}

 = p {}^{2}  - 2p \: . \: 8x + (8x) {}^{2}

 = p {}^{2}  - 16px + 64x {}^{2}

d)

 = (m {}^{2}  - n) {}^{2}

 = (m {}^{2} ) {}^{2}  - 2m {}^{2} n + n {}^{2}

 = m {}^{4}  - 2m {}^{2} n + n {}^{2}

e)

 = ( \frac{m}{4}  - 3) {}^{2}

 = ( \frac{m}{4} ) {}^{2}  - 2 \: . \:  \frac{m}{4}  \: . \: 3 + 3 {}^{2}

 =  \frac{m {}^{2} }{16}  -  \frac{6m}{4}  + 9

 =  \frac{m {}^{2} }{16}  -  \frac{3m}{2}  + 9

f)

 = (5x - 4) {}^{2}

 = (5x) {}^{2}  - 2 \: . \: 5x \: . \: 4 + 4 {}^{2}

 = 25x {}^{2}  - 40x + 16

g)

 = (3x - 2) {}^{2}

 = (3x) {}^{2}  - 2 \: . \: 3x \: . \: 2 + 2 {}^{2}

 = 9x {}^{2}  - 12x + 4

h)

 = (xy -  \frac{z}{2} ) {}^{2}

 = (xy) {}^{2}  - 2xy \: . \:  \frac{z}{2}  + ( \frac{z}{2} ) {}^{2}

 = x {}^{2} y {}^{2}  -  \frac{2xyz}{2}  +  \frac{z {}^{2} }{4}

 = x {}^{2} y { }^{2}  - xyz +  \frac{z {}^{2} }{4}

Att. Makaveli1996

Perguntas similares