• Matéria: Matemática
  • Autor: pinpolhodoido9
  • Perguntado 6 anos atrás

O número α E (0, π/2) é tal que tan α + cot α = 10/3
. Determine o valor das seis razões trigonométricas de α.

Respostas

respondido por: Anônimo
2

Explicação passo-a-passo:

\sf tg~\alpha+cotg~\alpha=\dfrac{10}{3}

Seja \sf tg~\alpha=x

\sf x+\dfrac{1}{x}=\dfrac{10}{3}

\sf 3x^2+3=10x

\sf 3x^2-10x+3=0

\sf \Delta=(-10)^2-4\cdot3\cdot3

\sf \Delta=100-36

\sf \Delta=64

\sf x=\dfrac{-(-10)\pm\sqrt{64}}{2\cdot3}=\dfrac{10\pm8}{6}

Como \sf \alpha pertence ao 1° quadrante, sua tangente é positiva

\sf x'=\dfrac{10+8}{6}~\Rightarrow~x'=\dfrac{18}{6}~\Rightarrow~\red{x'=3}

\sf x"=\dfrac{10-8}{6}~\Rightarrow~x"=\dfrac{2}{6}~\Rightarrow~\red{x'"=\dfrac{1}{3}}

• Para \sf x=3:

\sf \dfrac{sen~\alpha}{cos~\alpha}=3

\sf sen~\alpha=3\cdot cos~\alpha

Pela relação fundamental da trigonometria:

\sf sen^2~\alpha+cos^2~\alpha=1

Substituindo \sf sen~\alpha por \sf 3\cdot cos~\alpha:

\sf (3\cdot cos~\alpha)^2+cos^2~\alpha=1

\sf 9\cdot cos^2~\alpha+cos^2~\alpha=1

\sf 10\cdot cos^2~\alpha=1

\sf cos^2~\alpha=\dfrac{1}{10}

Como \sf \alpha pertence ao 1° quadrante, sua cosseno é positivo

\sf cos~\alpha=\sqrt{\dfrac{1}{10}}

\sf cos~\alpha=\dfrac{1}{\sqrt{10}}

\sf cos~\alpha=\dfrac{1}{\sqrt{10}}\cdot\dfrac{\sqrt{10}}{\sqrt{10}}

\sf cos~\alpha=\dfrac{\sqrt{10}}{10}

Assim:

\sf sen~\alpha=3\cdot\dfrac{\sqrt{10}}{10}

\sf sen~\alpha=\dfrac{3\sqrt{10}}{10}

\sf cossec~\alpha=\dfrac{1}{sen~\alpha}

\sf cossec~\alpha=\dfrac{1}{\frac{3\sqrt{10}}{10}}

\sf cossec~\alpha=\dfrac{10}{3\sqrt{10}}

\sf cossec~\alpha=\dfrac{10}{3\sqrt{10}}\cdot\dfrac{\sqrt{10}}{\sqrt{10}}

\sf cossec~\alpha=\dfrac{10\sqrt{10}}{3\cdot10}

\sf cossec~\alpha=\dfrac{10\sqrt{10}}{30}

\sf cossec~\alpha=\dfrac{\sqrt{10}}{3}

\sf sec~\alpha=\dfrac{1}{cos~\alpha}

\sf sec~\alpha=\dfrac{1}{\frac{\sqrt{10}}{10}}

\sf sec~\alpha=\dfrac{10}{\sqrt{10}}

\sf sec~\alpha=\dfrac{10}{\sqrt{10}}\cdot\dfrac{\sqrt{10}}{\sqrt{10}}

\sf sec~\alpha=\dfrac{10\sqrt{10}}{10}

\sf sec~\alpha=\sqrt{10}

\sf cotg~\alpha=\dfrac{1}{tg~\alpha}

\sf cotg~\alpha=\dfrac{1}{3}

As seis razões trigonométricas de α são:

\sf \red{sen~\alpha=\dfrac{3\sqrt{10}}{10}}

\sf \red{cos~\alpha=\dfrac{\sqrt{10}}{10}}

\sf \red{tg~\alpha=3}

\sf \red{sec~\alpha=\sqrt{10}}

\sf \red{cossec~\alpha=\dfrac{\sqrt{10}}{3}}

\sf \red{cotg~\alpha=\dfrac{1}{3}}

Para \sf x=\dfrac{1}{3}:

\sf \dfrac{sen~\alpha}{cos~\alpha}=\dfrac{1}{3}

\sf cos~\alpha=3\cdot sen~\alpha

Pela relação fundamental da trigonometria:

\sf sen^2~\alpha+cos^2~\alpha=1

Substituindo \sf cos~\alpha por \sf 3\cdot sen~\alpha:

\sf sen^2~\alpha+(3\cdot sen~\alpha)^2=1

\sf sen^2~\alpha+9\cdot sen^2~\alpha=1

\sf 10\cdot sen^2~\alpha=1

\sf sen^2~\alpha=\dfrac{1}{10}

Como \sf \alpha pertence ao 1° quadrante, seu seno é positivo

\sf sen~\alpha=\sqrt{\dfrac{1}{10}}

\sf sen~\alpha=\dfrac{1}{\sqrt{10}}

\sf sen~\alpha=\dfrac{1}{\sqrt{10}}\cdot\dfrac{\sqrt{10}}{\sqrt{10}}

\sf sen~\alpha=\dfrac{\sqrt{10}}{10}

Assim:

\sf cos~\alpha=3\cdot\dfrac{\sqrt{10}}{10}

\sf cos~\alpha=\dfrac{3\sqrt{10}}{10}

\sf cossec~\alpha=\dfrac{1}{sen~\alpha}

\sf cossec~\alpha=\dfrac{1}{\frac{\sqrt{10}}{10}}

\sf cossec~\alpha=\dfrac{10}{\sqrt{10}}

\sf cossec~\alpha=\dfrac{10}{\sqrt{10}}\cdot\dfrac{\sqrt{10}}{\sqrt{10}}

\sf cossec~\alpha=\dfrac{10\sqrt{10}}{10}

\sf cossec~\alpha=\sqrt{10}

\sf sec~\alpha=\dfrac{1}{cos~\alpha}

\sf sec~\alpha=\dfrac{1}{\frac{3\sqrt{10}}{10}}

\sf sec~\alpha=\dfrac{10}{3\sqrt{10}}

\sf sec~\alpha=\dfrac{10}{3\sqrt{10}}\cdot\dfrac{\sqrt{10}}{\sqrt{10}}

\sf sec~\alpha=\dfrac{10\sqrt{10}}{3\cdot10}

\sf sec~\alpha=\dfrac{10\sqrt{10}}{30}

\sf sec~\alpha=\dfrac{\sqrt{10}}{3}

\sf cotg~\alpha=\dfrac{1}{tg~\alpha}

\sf cotg~\alpha=\dfrac{1}{3}

As seis razões trigonométricas de α são:

\sf \red{sen~\alpha=\dfrac{\sqrt{10}}{10}}

\sf \red{cos~\alpha=\dfrac{3\sqrt{10}}{10}}

\sf \red{tg~\alpha=\dfrac{1}{3}}

\sf \red{sec~\alpha=\dfrac{\sqrt{10}}{3}}

\sf \red{cossec~\alpha=\sqrt{10}}

\sf \red{cotg~\alpha=3}

Perguntas similares