• Matéria: Matemática
  • Autor: gamerhick214
  • Perguntado 6 anos atrás

Encontre as raizes e as coordenadas do vertice


F(x)= x² + 4x +1

Respostas

respondido por: auditsys
1

Resposta:

\text{Leia abaixo}

Explicação passo-a-passo:

\sf f(x) = x^2 + 4x + 1

\sf \Delta = b^2 - 4.a.c

\sf \Delta = 4^2 - 4.1.1

\sf \Delta = 16 - 4

\sf \Delta = 12

\sf x = \dfrac{-b \pm \sqrt{\Delta}}{2a}

\sf x' = \dfrac{-4 + \sqrt{12}}{2.1} = \dfrac{-4 + 2\sqrt{3}}{2} = -2 + \sqrt{3}

\sf x'' = \dfrac{-4 - \sqrt{12}}{2.1} = \dfrac{-4 - 2\sqrt{3}}{2} = -2 - \sqrt{3}

\boxed{\boxed{\sf \text{S} = \text{\{}-2 + \sqrt{3}, -2 - \sqrt{3}{\}}}}

\sf \text{V}_x = -\dfrac{b}{2a} = -\dfrac{4}{2} = -2

\sf \text{V}_y = -\dfrac{\Delta}{4a} = -\dfrac{12}{4} = -3

\boxed{\boxed{\sf \text{V(-2,-3)}}}

Perguntas similares