• Matéria: Matemática
  • Autor: Anônimo
  • Perguntado 6 anos atrás

1) Aplicando o teorema de Laplace , calcule os determinantes:

a) det A= \left[\begin{array}{ccc}3&2&-1\\6&0&0\\2&-3&5\end{array}\right]

b) Det A= \left[\begin{array}{ccc}x&y&1\\3&1&1\\2&-3&1\end{array}\right]

2) RESOLVA AS EQUAÇOES

a) \left[\begin{array}{ccc}x-2&6\\3&5\end{array}\right] = 2

b) \left[\begin{array}{ccc}x+3&5\\1&x-1\end{array}\right] = 0


Anônimo: só responda se souber....
Anônimo: se nao irei denunciar
jovemcebolinha: Meu Deus, eu não sei por isso não vou responder, rs
Anônimo: kk acho bom nn responde msmo kk..
Anônimo: Eai pauloooo

Respostas

respondido por: Anônimo
4

Explicação passo-a-passo:

1)

Pelo Teorema de Laplace:

\sf det~(A)=a_{21}\cdot A_{21}+a_{22}\cdot A_{22}+a_{23}\cdot A_{23}

\sf det~(A)=6\cdot A_{21}+0\cdot A_{22}+0\cdot A_{23}

\sf det~(A)=a_{21}\cdot A_{21}+0+0

\sf det~(A)=a_{21}\cdot A_{21}

\sf A_{ij}=(-1)^{i+j}\cdot D_{ij}

Temos que:

\sf D_{12}=\left|\begin{array}{cc} \sf 2 & \sf -1 \\ \sf -3 & \sf 5 \end{array}\right|

\sf D_{12}=2\cdot5-(-3)\cdot(-1)

\sf D_{12}=10-3

\sf D_{12}=7

Assim:

\sf A_{12}=(-1)^{2+1}\cdot D_{21}

\sf A_{12}=(-1)^{3}\cdot7

\sf A_{12}=(-1)\cdot7

\sf A_{12}=-7

Logo:

\sf det~(A)=a_{21}\cdot A_{21}

\sf det~(A)=6\cdot(-7)

\sf \red{det~(A)=-42}

b)

Pelo Teorema de Laplace:

\sf det~(A)=a_{13}\cdot A_{13}+a_{23}\cdot A_{23}+a_{33}\cdot A_{33}

\sf det~(A)=1\cdot A_{13}+1\cdot A_{23}+1\cdot A_{33}

\sf det~(A)=A_{13}+A_{23}+A_{33}

\sf A_{ij}=(-1)^{i+j}\cdot D_{ij}

Temos que:

\sf D_{13}=\left|\begin{array}{cc} \sf 3 & \sf 1 \\ \sf 2 & \sf -3 \end{array}\right|

\sf D_{13}=3\cdot(-3)-2\cdot1

\sf D_{13}=-9-2

\sf D_{13}=-11

\sf D_{23}=\left|\begin{array}{cc} \sf x & \sf y \\ \sf 2 & \sf -3 \end{array}\right|

\sf D_{23}=x\cdot(-3)-2\cdot y

\sf D_{23}=-3x-2y

\sf D_{33}=\left|\begin{array}{cc} \sf x & \sf y \\ \sf 3 & \sf 1 \end{array}\right|

\sf D_{33}=x\cdot1-3\cdot y

\sf D_{33}=x-3y

Assim:

\sf A_{13}=(-1)^{1+3}\cdot D_{13}

\sf A_{13}=(-1)^{4}\cdot(-11)

\sf A_{13}=1\cdot(-11)

\sf A_{13}=-11

\sf A_{23}=(-1)^{2+3}\cdot D_{23}

\sf A_{23}=(-1)^{5}\cdot(-3x-2y)

\sf A_{13}=(-1)\cdot(-3x-2y)

\sf A_{13}=3x+2y

\sf A_{33}=(-1)^{3+3}\cdot D_{33}

\sf A_{33}=(-1)^{6}\cdot(x-3y)

\sf A_{33}=1\cdot(x-3y)

\sf A_{33}=x-3y

Logo:

\sf det~(A)=A_{13}+A_{23}+A_{33}

\sf det~(A)=-11+3x+2y+x-3y

\sf \red{det~(A)=4x-y-11}

2)

a)

\sf 5\cdot(x-2)-3\cdot6=2

\sf 5x-10-18=2

\sf 5x-28=2

\sf 5x=2+28

\sf 5x=30

\sf x=\dfrac{30}{5}

\sf \red{x=6}

b)

\sf (x+3)\cdot(x-1)-1\cdot5=0

\sf x^2-x+3x-3-5=0

\sf x^2+2x-8=0

\sf \Delta=2^2-4\cdot1\cdot(-8)

\sf \Delta=4+32

\sf \Delta=36

\sf x=\dfrac{-2\pm\sqrt{36}}{2\cdot1}=\dfrac{-2\pm6}{2}

\sf x'=\dfrac{-2+6}{2}~\Rightarrow~x'=\dfrac{4}{2}~\Rightarrow~\red{x'=2}

\sf x"=\dfrac{-2-6}{2}~\Rightarrow~x"=\dfrac{-8}{2}~\Rightarrow~\red{x"=-4}


Anônimo: tenho muita tarefas e poco tempo
Francisconekatia: oi
Anônimo: ;-;
Francisconekatia: ;-;
Anônimo: (-^-^-)
Anônimo: ;-;
Anônimo: ⊂(・﹏・⊂)
Anônimo: Pauloooo
Francisconekatia: Q paulo ?;-;
Anônimo: nd decha
Perguntas similares