• Matéria: Matemática
  • Autor: rexdown42
  • Perguntado 6 anos atrás

Resolva as inequações U = R
a) 8x – 10 > 2x + 8
b) 2(3x +7) < – 4x + 8
c) 20 – (2x +5) ≤ 11 + 8x

Respostas

respondido por: Nasgovaskov
2

Explicação passo a passo:

a)

\sf{8x - 10 &gt; 2x + 8}

\sf{8x - 2x &gt; 8 + 10}

\sf{6x &gt; 18}

\sf{x &gt; \dfrac{18}{6}}

\sf{x &gt; 3}

\boxed{\sf{S = \left\{x \mathbf{\in} \mathbb{R} / x &gt; 3\right\}}}

b)

\sf{2(3x + 7) &lt; - 4x + 8}

\sf{6x + 14 &lt; - 4x + 8}

\sf{6x + 4x &lt; 8 - 14}

\sf{10x &lt; - 6}

\sf{x &lt; - \dfrac{6}{10}}

\sf{x &lt; - \dfrac{6\div2}{10\div2}}

\sf{x &lt; - \dfrac{3}{5}}

\boxed{\sf{S = \left\{x \mathbf{\in} \mathbb{R} / x &lt; - \dfrac{3}{5}\right\}}}

c)

\sf{20 - (2x + 5) ≤ 11 + 8x}

\sf{20 - 2x - 5 ≤ 11 + 8x}

\sf{- 2x - 8x ≤ 11 - 20 + 5}

\sf{- 10x ≤ - 4}

\sf{10x ≥ 4~~\cdot (-1)}

\sf{x ≥ \dfrac{4}{10}}

\sf{x ≥ - \dfrac{4\div2}{10\div2}}

\sf{x ≥ - \dfrac{2}{5}}

\boxed{\sf{S = \left\{x \mathbf{\in} \mathbb{R} / x ≥ - \dfrac{2}{5}\right\}}}

Perguntas similares