• Matéria: Matemática
  • Autor: graziellysantoss22
  • Perguntado 6 anos atrás

1. Resolva as equações exponenciais:

a)2ˣ⁺³= 1/8 =
b) 5³ˣ⁺¹ +25
c) 81ˣ⁻² =⁴√27 =
d) √4ˣ⁺¹ = ³√16 =

Respostas

respondido por: Nasgovaskov
1

Explicação passo a passo:

a)

\sf{2^{x + 3} = \dfrac{1}{8}}

\sf{2^{x + 3} = 8^{-1}}

\sf{2^{x + 3} = (2^3)^{-1}}

\sf{2^{x + 3} = 2^{3 \times -1}}

\sf{2^{x + 3} = 2^{-3}}

\sf{\backslash \!\!\! 2^{x + 3} = \backslash \!\!\! 2^{-3}}

\sf{x + 3 = - 3}

\sf{x = - 3 - 3}

\green{\boxed{\sf{x = - 6}}}

b)

\sf{5^{3x + 1} = 25}

\sf{5^{3x + 1} = 5^2}

\sf{\backslash \!\!\! 5^{3x + 1} = \backslash \!\!\! 5^2}

\sf{3x + 1 = 2}

\sf{3x = 2 - 1}

\sf{3x = 1}

\green{\boxed{\sf{x = \dfrac{1}{3}}}}

c)

\sf{81^{x - 2} = \sqrt[4]{27}}

\sf{(3^4)^{x - 2} = 27^{\frac{1}{4}}}

\sf{3^{4 \times (x - 2)} = (3^3)^{\frac{1}{4}}}

\sf{3^{4x - 8} = 3^{\frac{3 \times 1}{4}}}

\sf{3^{4x - 8} = 3^{\frac{3}{4}}}

\sf{\backslash \!\!\! 3^{4x - 8} = \backslash \!\!\! 3^{\frac{3}{4}}}

\sf{4x - 8 = \dfrac{3}{4}}

\sf{4x = \dfrac{3}{4} + 8}

\sf{4x = \dfrac{8 \times 4 + 3}{4}}

\sf{4x = \dfrac{35}{4}}

\sf{x = \dfrac{35}{\dfrac{4}{4}}}

\sf{x = \dfrac{35}{4 \times 4}}

\green{\boxed{\sf{x = \dfrac{35}{16}}}}

d)

\sf{\sqrt{4^{x + 1}} = \sqrt[3]{16}}

\sf{4^{\frac{x + 1}{2}} = 16^{\frac{1}{3}}}

\sf{4^{\frac{x + 1}{2}} = (4^2)^{\frac{1}{3}}}

\sf{4^{\frac{x + 1}{2}} = 4^{\frac{2 \times 1}{3}}}

\sf{4^{\frac{x + 1}{2}} = 4^{\frac{2}{3}}}

\sf{\backslash \!\!\! 4^{\frac{x + 1}{2}} = \backslash \!\!\! 4^{\frac{2}{3}}}

\sf{\dfrac{x + 1}{2} = \dfrac{2}{3}}

\sf{(x + 1) \cdot 3 = 2 \cdot 2}

\sf{3x + 3 = 4}

\sf{3x = 4 - 3}

\sf{3x = 1}

\green{\boxed{\sf{x = \dfrac{1}{3}}}}

Perguntas similares