• Matéria: Matemática
  • Autor: jcr9954
  • Perguntado 6 anos atrás

forma fatorada da equação do 2° grau 2x²+ 7x + 5​

Respostas

respondido por: oiiieesoulegaldms
1

Resposta:

Explicação passo-a-passo:

Vamos lá.

Veja,  que a resolução é simples.

Quando você tem uma função do 2º grau, da forma f(x) = ax² + bx + c, com raízes iguais a x' e x'', a sua forma fatorada será dada assim:

ax² + bx + c = a*(x-x')*(x-x'')       . (I)

Vamos "guardar" a expressão (I) acima, pois daqui a pouco vamos precisar dela.

Assim, vamos logo encontrar as raízes da equação da sua questão [f(x) = 2x² - 7x + 5]. Para isso, vamos igualar a equação a zero, ficando assim:

2x² - 7x + 5 = 0 ----- vamos aplicar a fórmula de Bháskara para encontrar as raízes. A fórmula de Bháskara é esta:

x = [-b ± √(Δ)]/2a --- note que os coeficientes bem como o Δ da equação acima são estes:

a = 2 --- (é o coeficiente de x²)

b =  -7 --- (é o coeficiente de x)

c = 5 --- (é o coeficiente do termo independente)

Δ = b² - 4ac = (-7)² - 4*2*3 = 49 - 24 = 25.

Assim, fazendo as devidas substituições na fórmula de Bháskara acima, teremos;

x = [-(-7) ± √(25)]/2*2

x = [7 ± √(25)]/4 ----- como √(25) = 5, ficaremos com:

x = [7 ± 5]/4 ----- daqui você já conclui que:

x' = (7-5)/4 = 2/4 = 1/2 (após simplificarmos tudo por "2")

x'' = (7+5)/4 = 12/4 = 3.

Assim, como você viu, as raízes da equação da sua questão são estas:

x' = 1/2 e x'' = 3.

Finalmente, vamos encontrar a forma fatorada da função da sua questão . Para isso, aplicaremos o que deixamos lá na expressão (I), logo no início, que é esta:

ax² + bx + c = a*(x-x')*(x-x'')

Assim, tendo a relação acima como parâmetro, então a forma fatorada da equação da sua questão [f(x) = 2x² - 7x + 3, cujas raízes são x' = 1/2 e x'' = 3] será dada assim:

2x² - 7x + 3 = 2*(x-1/2)*(x-3) <--- Esta é a resposta. Ou seja, esta é a forma fatorada da equação da sua questão.

É isso aí.

Deu pra entender bem?

OK?


jcr9954: deu sim
Perguntas similares