• Matéria: Matemática
  • Autor: douglasflorenc
  • Perguntado 6 anos atrás

Considere a seguinte integral
\int\limits^\frac{1}{2} _0 {x} \,e^{2x} \, dx.
Ela é igual a:

e/4

e/2 + 1

1/2

-1/4

1/4


diasleonardo658: conseguiu alguma?

Respostas

respondido por: CyberKirito
1

Caso tenha problemas para visualizar a resposta experimente abrir pelo navegador https://brainly.com.br/tarefa/33427427?answeringSource=greatJob%2FquestionPage%2F1

===============================================================

\displaystyle\sf{\int_{0}^{\frac{1}{2}}x~e^{2x}~dx}\\\sf{fac_{\!\!,}a~u=x\implies du=dx}\\\sf{dv=e^{2x}~dx\implies v=\dfrac{1}{2}e^{2x}}\\\displaystyle\sf{\int x~e^{2x}~dx=x\cdot\dfrac{1}{2}e^{2x}-\int \dfrac{1}{2}e^{2x}~dx}\\\displaystyle\sf{\int x~e^{2x}~dx=\dfrac{1}{2}xe^{2x}-\dfrac{1}{2}\cdot\dfrac{1}{2}e^{2x}+k}\\\displaystyle\sf{\int x~e^{2x}~dx=\dfrac{1}{2}e^{2x}(x-\dfrac{1}{2})+k}

\displaystyle\sf{\int_{0}^{\frac{1}{2}}x~e^{2x}~dx=\dfrac{1}{2}e^{2x}(x-\dfrac{1}{2})\Bigg|_{0}^{\frac{1}{2}}}\\\sf{\dfrac{1}{2}e^{2\cdot\frac{1}{2}}\cdodt(\dfrac{1}{2}-\dfrac{1}{2})-\dfrac{1}{2}e^{2\cdot0}\cdot(0-\dfrac{1}{2})=\dfrac{1}{2}e\cdot0+\dfrac{1}{4}e^0=\dfrac{1}{4}}\\\displaystyle\sf{\int_{0}^{\frac{1}{2}}xe^{2x}~dx=\dfrac{1}{4}\checkmark}

Perguntas similares