• Matéria: Matemática
  • Autor: thiagonogueirafilho1
  • Perguntado 6 anos atrás

10. Considerando os polinômios P= 5x - 12, X = 3x + 7 eR = 10x - 3, resolva a expressio

(P-Q)-(P-R)


saulomiranda19: No lugar do X, não seria Q?
thiagonogueirafilho1: Sim , escrevi errado
saulomiranda19: Ah, certo

Respostas

respondido por: Anônimo
4

Resposta:Observe que os polinômios são formados através de coeficientes (an, an–1, an–2, ... , a2, a1, a0) pertencentes ao conjunto dos números reais ligados à variável x. São classificados quanto ao grau, observe:

p(x) = 2x + 7 → grau 1

p(x) = 3x2 + 4x + 12 → grau 2

p(x) = 5x³ + 2x² – 4x + 81 → grau 3

p(x) = 10x4 – 3x³ + 2x² + x – 10 → grau 4

p(x) = 4x5 + 2x4 – 3x3 + 5x2 + x – 1 → grau 5

As expressões polinomiais possuem valores numéricos. Para esse modelo de cálculo, basta substituir a incógnita x por um número real. Observe:

Vamos calcular o valor numérico do polinômio p(x) = 2x³ + 5x² – 6x – 10, para x = 3 ou p(3):

p(3) = 2 * (3)³ + 5 * (3)² – 6 * 3 – 10

p(3) = 2 * 27 + 5 * 9 – 18 + 11

p(3) = 54 + 45 – 18 + 11

p(3) = 92

Temos que p(3) = 92

Veja outro exemplo envolvendo o polinômio p(x) = 2x² – 15x + 3, para x = 9 ou p(9):

p(9) = 2 * 9² – 15 * 9 + 3

p(9) = 2 * 81 – 135 + 3

p(9) = 162 – 135 + 3

p(9) = 30

Portanto p(9) = 30

Ao calcularmos o valor numérico de um polinômio e encontrarmos como resultado zero, dizemos que o número trocado por x na expressão é a raiz do polinômio. Por exemplo, na expressão p(x) = x² – 6x + 8, temos que o número real 2 é considerado raiz do polinômio, pois:

p(x) = x² – 6x + 8

p(2) = 2² – 6 * 2 + 8

p(2) = 4 – 12 + 8

p(2) = 0

Na expressão p(x) = –x² + 5x – 6 = 0, verifique se o número real 2 é raiz do polinômio.

p(2) = –(2)² + 5 * 2 – 6

p(2) = –4 + 10 – 6

p(2) = –4 + 10 – 6

p(2) = – 10 + 10

p(2) = 0

Ao verificar p(2) = 0 no polinômio p(x) = –x² + 5x – 6 = 0, concluímos que o número 2 é considerado sua raiz.

Observando mais um exemplo, vamos verificar se no polinômio

p(x) = 4 – (x – 5)² – 2 * (x – 3) * (x + 3) a condição p(3) = 0.

p(x) = 4 – (x – 5)² – 2 * (x – 3) * (x + 3)

p(x) = 4 – (x² – 10x + 25) – 2 * (x² + 3x – 3x – 9)

p(x) = 4 – x² + 10x – 25 – 2 * (x² – 9)

p(x) = 4 – x² + 10x – 25 – 2x² + 18

p(x) = –3x² + 10x – 3

p(3) = –3 * 3² + 10 * 3 – 3

p(3) = –3 * 9 + 30 – 3

p(3) = –27 + 30 – 3

p(3) = – 30 + 30

p(3) = 0

A condição de p(3) = 0 é verificada corretamente para o polinômio p(x) = 4 – (x – 5)² – 2 * (x – 3) * (x + 3). Dessa forma, temos que o número 3 é raiz do polinômio especificado.

Explicação passo-a-passo:O procedimento utilizado na adição e subtração de polinômios envolve técnicas de redução de termos semelhantes, jogo de sinal, operações envolvendo sinais iguais e sinais diferentes. Observe os exemplos a seguir:

Adição

Exemplo 1

Adicionar x2 – 3x – 1 com –3x2 + 8x – 6.

(x2 – 3x – 1) + (–3x2 + 8x – 6) → eliminar o segundo parênteses através do jogo de sinal.

+(–3x2) = –3x2

+(+8x) = +8x

+(–6) = –6

x2 – 3x – 1 –3x2 + 8x – 6 → reduzir os termos semelhantes.

x2 – 3x2 – 3x + 8x – 1 – 6

–2x2 + 5x – 7

Portanto: (x2 – 3x – 1) + (–3x2 + 8x – 6) = –2x2 + 5x – 7

Exemplo 2

Adicionando 4x2 – 10x – 5 e 6x + 12, teremos:

(4x2 – 10x – 5) + (6x + 12) → eliminar os parênteses utilizando o jogo de sinal.

4x2 – 10x – 5 + 6x + 12 → reduzir os termos semelhantes.

4x2 – 10x + 6x – 5 + 12

4x2 – 4x + 7

Portanto: (4x2 – 10x – 5) + (6x + 12) = 4x2 – 4x + 7

Subtração

Exemplo 3

Subtraindo –3x2 + 10x – 6 de 5x2 – 9x – 8.

(5x2 – 9x – 8) – (–3x2 + 10x – 6) → eliminar os parênteses utilizando o jogo de sinal.

– (–3x2) = +3x2

– (+10x) = –10x

– (–6) = +6

5x2 – 9x – 8 + 3x2 –10x +6 → reduzir os termos semelhantes.

5x2 + 3x2 – 9x –10x – 8 + 6

8x2 – 19x – 2

Portanto: (5x2 – 9x – 8) – (–3x2 + 10x – 6) = 8x2 – 19x – 2

Exemplo 4

Se subtrairmos 2x³ – 5x² – x + 21 e 2x³ + x² – 2x + 5, teremos:

(2x³ – 5x² – x + 21) – (2x³ + x² – 2x + 5) → eliminando os parênteses através do jogo de sinais.

2x³ – 5x² – x + 21 – 2x³ – x² + 2x – 5 → redução de termos semelhantes.

2x³ – 2x³ – 5x² – x² – x + 2x + 21 – 5

0x³ – 6x² + x + 16

– 6x² + x + 16

Portanto: (2x³ – 5x² – x + 21) – (2x³ + x² – 2x + 5) = – 6x² + x + 16

Exemplo 5

Considerando os polinômios A = 6x³ + 5x² – 8x + 15, B = 2x³ – 6x² – 9x + 10 e C = x³ + 7x² + 9x + 20. Calcule:

a) A + B + C

(6x³ + 5x² – 8x + 15) + (2x³ – 6x² – 9x + 10) + (x³ + 7x² + 9x + 20)

6x³ + 5x² – 8x + 15 + 2x³ – 6x² – 9x + 10 + x³ + 7x² + 9x + 20

6x³ + 2x³ + x³ + 5x² – 6x² + 7x² – 8x – 9x + 9x + 15 + 10 + 20

9x³ + 6x² – 8x + 45

A + B + C = 9x³ + 6x² – 8x + 45

b) A – B – C

(6x³ + 5x² – 8x + 15) – (2x³ – 6x² – 9x + 10) – (x³ + 7x² + 9x + 20)

6x³ + 5x² – 8x + 15 – 2x³ + 6x² + 9x – 10 – x³ – 7x² – 9x – 20

6x³ – 2x³ – x³ + 5x² + 6x² – 7x² – 8x + 9x – 9x + 15 – 10 – 20

6x³ – 3x³ + 11x² – 7x² – 17x + 9x + 15 – 30

3x³ + 4x² – 8x – 15

A – B – C = 3x³ + 4x² – 8x – 15


Anônimo: escrevi muito
Anônimo: mais escrevi uma explicacao passo a passo
respondido por: saulomiranda19
6

Resposta:

7x - 10

Explicação passo-a-passo:

(P-Q)-(P-R) =

(5x - 12 - (3x + 7)) - (5x - 12 - (10x - 3)) =

(5x - 12 - 3x - 7) - (5x - 12 - 10x + 3) =

(2x - 19) - (- 5x - 9) =

(2x - 19) + 5x + 9 =

7x - 10

Perguntas similares