3) MODA é:
Aquele termo mais frequente em um conjunto de dados.
Aquele termo menos frequente em uma amostra
Um termo qualquer em uma amostra.
Respostas
Explicação passo-a-passo:
Moda é uma das medidas de altura de um conjunto de dados, assim como a média e a mediana. Ela pode ser definida em moda amostral e populacional.
Em relação à primeira delas, a moda amostral de um conjunto de dados trata do valor que ocorre com maior frequência ou o valor mais comum em um conjunto de dados.[1] Moda é especialmente útil quando os valores ou as observações não são numéricos, casos em que a média e a mediana não podem ser definidas. Por exemplo, a moda da amostra {maçã, banana, laranja, laranja, laranja, pêssego} é laranja.[2] Moda amostral não é necessariamente única como média ou mediana. Amostras que possuem uma moda são chamadas unimodais. Por exemplo, a amostra {1, 2, 3, 5, 5, 6, 7} tem moda 5. Amostras que possuem duas modas são chamadas bimodais. Por exemplo, a amostra {1, 2, 3, 5, 5, 6, 6} tem modas 5 e 6. Amostras que possuem várias modas são chamadas multimodais. Por exemplo, a amostra {1, 2, 3, 5, 5, 6, 6, 7, 7} tem modas 5, 6 e 7. Amostras que não possuem moda são chamadas amodais. Por exemplo, a amostra {1, 3, 2, 5, 7, 6} não tem moda.[3]
Já a moda populacional de uma distribuição de probabilidade discreta é o valor {\displaystyle x}x, em que a função massa de probabilidade atinge o valor máximo. Em outras palavras, é o valor que é mais provável de ser amostrado. Moda populacional de uma distribuição de probabilidade contínua é o valor {\displaystyle x}x, em que a função densidade de probabilidade atinge o valor máximo. Em outras palavras, é o valor que está no pico. Moda populacional também não é necessariamente única, uma vez que a função massa de probabilidade ou a função densidade de probabilidade podem ter o mesmo valor máximo em vários pontos {\displaystyle x_{1},x_{2}\dots }{\displaystyle x_{1},x_{2}\dots }. O caso extremo ocorre nas distribuições uniformes, em que todos os valores ocorrem com igual frequência.
De acordo com a definição acima, máximos globais são modas. Quando uma função densidade de probabilidade tem vários máximos locais, é comum referir-se a todos os máximos locais como modos de distribuição. Tal distribuição contínua é chamada multimodal (em oposição a unimodal). Em distribuições unimodais simétricas como a distribuição normal ou distribuição gaussiana (distribuição cuja função densidade de probabilidade forma a curva em forma de sino quando representada graficamente), a média, a mediana e a moda coincidem. Em amostras extraídas de distribuições simétricas, a média pode ser a estimativa da moda populacional. É importante lembrar que o valor expresso como maioria em um conjunto de dados não necessariamente representa o valor da moda estatística. desculpa sei que é grande mais espero ter ajudado
Explicação passo-a-passo: