• Matéria: Matemática
  • Autor: osextordq
  • Perguntado 5 anos atrás

Dada a matriz
A= [-2 3 1]
......[-1 0 4]
......[ 1 -2 3]
determine:
a) cof (a12) c) cof (a22) e) cof (a23)
b) cof (a31) d) cof (a13) f) cof (a33)

Respostas

respondido por: Nasgovaskov
3

Explicação passo a passo:

Temos a matriz:

\begin{bmatrix}  -2&3&1 \\ -1&0&4 \\ 1&-2&3 \end{bmatrix}

Para encontrar o cofator, devemos eliminar a linha e a coluna do elemento

Lembrando que i = linha, j = coluna

a)

\sf A_{12} <= linha 1, coluna 2. Logo devemos eliminar a linha e a coluna do elemento 3, dessa forma formando uma outra matriz:

\begin{bmatrix}  -1&amp;4 \\ 1&amp;3 \end{bmatrix}

Calcule seu determinante

\sf D = (- 1*3) - (4*1)

\sf D = - 3 - 4

\red{\sf D = - 7}

Agora vamos calcular o cofator

\sf C_{ij} = (-1)^{i+j} * D

\sf C_{12} = (-1)^{1+2} * (-7)

\sf C_{12} = (-1)^{3} * (-7)

\sf C_{12} = (-1) * (-7)

\boxed{\sf C_{12} = 7}

Vamos fazer a mesma coisa nas outras alternativas:

b)

\sf A_{31} <= eliminar linha 3 e coluna 1

\begin{bmatrix}  3&amp;1 \\ 0&amp;4 \end{bmatrix}

\sf D = (3*4) - (1*0)

\sf D = 12 - 0

\red{\sf D = 12}

__________________

\sf C_{ij} = (-1)^{i+j} * D

\sf C_{31} = (-1)^{3+1} * 12

\sf C_{31} = (-1)^{4} * 12

\sf C_{31} = 1 * 12

\boxed{\sf C_{31} = 12}

__________________

c)

\sf A_{22} <= eliminar linha 2 e coluna 2

\begin{bmatrix}  -2&amp;1 \\ 1&amp;3 \end{bmatrix}

\sf D = (-2*3) - (1*1)

\sf D = - 6 - 1

\red{\sf D = - 7}

__________________

\sf C_{ij} = (-1)^{i+j} * D

\sf C_{22} = (-1)^{2+2} * (-7)

\sf C_{22} = (-1)^{4} * (-7)

\sf C_{22} = 1 * (-7)

\boxed{\sf C_{22} = - 7}

__________________

d)

\sf A_{13} <= eliminar linha 1 e coluna 3

\begin{bmatrix}  -1&amp;0 \\ 1&amp;-2 \end{bmatrix}

\sf D = (-1*(-2)) - (0*1)

\sf D = 2 - 0

\red{\sf D = 2}

__________________

\sf C_{ij} = (-1)^{i+j} * D

\sf C_{13} = (-1)^{1+3} * 2

\sf C_{13} = (-1)^{4} * 2

\sf C_{13} = 1 * 2

\boxed{\sf C_{13} = 2}

__________________

e)

\sf A_{23} <= eliminar linha 2 e coluna 3

\begin{bmatrix}  -2&amp;3 \\ 1&amp;-2 \end{bmatrix}

\sf D = (-2*(-2)) - (3*1)

\sf D = 4 - 3

\red{\sf D = 1}

__________________

\sf C_{ij} = (-1)^{i+j} * D

\sf C_{23} = (-1)^{2+3} * 1

\sf C_{23} = (-1)^{5} * 1

\sf C_{23} = (-1) * 1

\boxed{\sf C_{23} = -1}

__________________

f)

\sf A_{33} <= eliminar linha 3 e coluna 3

\begin{bmatrix}  -2&amp;3 \\ -1&amp;0 \end{bmatrix}

\sf D = (-2*0) - (3*(-1))

\sf D = 0 + 3

\red{\sf D = 3}

__________________

\sf C_{ij} = (-1)^{i+j} * D

\sf C_{33} = (-1)^{3+3} * 3

\sf C_{33} = (-1)^{6} * 3

\sf C_{33} = 1 * 3

\boxed{\sf C_{33} = 3}

respondido por: Anônimo
2

Explicação passo-a-passo:

\sf A=\Big[\begin{array}{ccc} \sf -2 &amp; \sf 3 &amp; \sf 1 \\ \sf -1 &amp; \sf 0 &amp; \sf 4 \\ \sf 1 &amp; \sf -2 &amp; \sf 3 \end{array}\Big]

\sf cof~(a_{ij})=(-1)^{1+j}\cdot D_{ij}

a)

\sf D_{12}=\Big|\begin{array}{cc} \sf -1 &amp; 4 \\ \sf 1 &amp; \sf 3 \end{array}\Big|

\sf D_{12}=(-1)\cdot3-1\cdot4

\sf D_{12}=-3-4

\sf D_{12}=-7

Assim:

\sf cof~(a_{12})=(-1)^{1+2}\cdot D_{12}

\sf cof~(a_{12})=(-1)^{3}\cdot(-7)

\sf cof~(a_{12})=(-1)\cdot(-7)

\sf \red{cof~(a_{12})=7}

b)

\sf D_{31}=\Big|\begin{array}{cc} \sf 3 &amp; 1 \\ \sf 0 &amp; \sf 4 \end{array}\Big|

\sf D_{31}=3\cdot4-0\cdot1

\sf D_{31}=12-0

\sf D_{31}=12

Assim:

\sf cof~(a_{31})=(-1)^{3+1}\cdot D_{31}

\sf cof~(a_{31})=(-1)^{4}\cdot12

\sf cof~(a_{31})=1\cdot12

\sf \red{cof~(a_{31})=12}

c)

\sf D_{22}=\Big|\begin{array}{cc} \sf -2 &amp; 1 \\ \sf 1 &amp; \sf 3 \end{array}\Big|

\sf D_{22}=(-2)\cdot3-1\cdot1

\sf D_{22}=-6-1

\sf D_{22}=-7

Assim:

\sf cof~(a_{22})=(-1)^{2+2}\cdot D_{22}

\sf cof~(a_{22})=(-1)^{4}\cdot(-7)

\sf cof~(a_{22})=1\cdot(-7)

\sf \red{cof~(a_{22})=-7}

d)

\sf D_{13}=\Big|\begin{array}{cc} \sf -1 &amp; 0 \\ \sf 1 &amp; \sf -2 \end{array}\Big|

\sf D_{13}=(-1)\cdot(-2)-1\cdot0

\sf D_{13}=2-0

\sf D_{13}=2

Assim:

\sf cof~(a_{13})=(-1)^{1+3}\cdot D_{13}

\sf cof~(a_{13})=(-1)^{4}\cdot2

\sf cof~(a_{13})=1\cdot2

\sf \red{cof~(a_{13})=2}

e)

\sf D_{23}=\Big|\begin{array}{cc} \sf -2 &amp; 3 \\ \sf 1 &amp; \sf -2 \end{array}\Big|

\sf D_{23}=(-2)\cdot(-2)-1\cdot3

\sf D_{23}=4-3

\sf D_{23}=1

Assim:

\sf cof~(a_{23})=(-1)^{2+3}\cdot D_{23}

\sf cof~(a_{23})=(-1)^{5}\cdot1

\sf cof~(a_{23})=(-1)\cdot1

\sf \red{cof~(a_{23})=-1}

f)

\sf D_{33}=\Big|\begin{array}{cc} \sf -2 &amp; 3 \\ \sf -1 &amp; \sf 0 \end{array}\Big|

\sf D_{33}=(-2)\cdot0-(-1)\cdot3

\sf D_{33}=0+3

\sf D_{33}=3

Assim:

\sf cof~(a_{33})=(-1)^{3+3}\cdot D_{33}

\sf cof~(a_{33})=(-1)^{6}\cdot3

\sf cof~(a_{33})=1\cdot3

\sf \red{cof~(a_{33})=3}

Perguntas similares