• Matéria: Matemática
  • Autor: joaogabrieljosemaria
  • Perguntado 6 anos atrás

Resolvendo e simplificando a expressão numérica 1/2 x (5/6 - 1/2)/(1/4 + 1/3) x 1/2 , encontramos como resultado:
A 3/7
B 4/7
C 5/7
D 1/7
E 2/7

Respostas

respondido por: Nasgovaskov
8

Explicação passo-a-passo:

\sf = \dfrac{\dfrac{1}{2} * \bigg(\dfrac{5}{6} - \dfrac{1}{2}\bigg)}{\bigg(\dfrac{1}{4} + \dfrac{1}{3}\bigg) * \dfrac{1}{2}}

=> mmc (6,2) = 6

=> mmc (4,3) = 12

\sf = \dfrac{\dfrac{1}{2} * \bigg(\dfrac{5}{6} - \dfrac{3}{6}\bigg)}{\bigg(\dfrac{3}{12} + \dfrac{4}{12}\bigg) * \dfrac{1}{2}}

\sf = \dfrac{\dfrac{1}{2} * \bigg(\dfrac{5-3}{6}\bigg)}{\bigg(\dfrac{3+4}{12}\bigg) * \dfrac{1}{2}}

\sf = \dfrac{\dfrac{1}{2} * \dfrac{2}{6}}{\dfrac{7}{12} * \dfrac{1}{2}}</p><p>

=> simplifique 2/6 por 2

\sf = \dfrac{\dfrac{1}{2} * \dfrac{1}{3}}{\dfrac{7}{12} * \dfrac{1}{2}}

\sf = \dfrac{\dfrac{1*1}{2*3}}{\dfrac{7*1}{12*2}}

\sf = \dfrac{\dfrac{1}{6}}{\dfrac{7}{24}}

=> multiplique os meios e extremos

\sf = \dfrac{1*24}{6*7}

\sf = \dfrac{24}{42}

=> simplifique 24/42 por 6

\red{\sf = \dfrac{4}{7}}

>>>>> Letra B <<<<

Perguntas similares
7 anos atrás