Bom dia, Aos bons da matemática ( necessito)
Marque Verdadeiro ou Falso:
( ) A função quadrática é positiva quando o seu gráfica encontra – se acima do eixo x
( ) Quando ∆ = 0 a função quadrática possui duas raízes diferentes
( ) Quando a > 0 a concavidade da parábola está voltada para baixo
( ) A função quadrática é negativa quando o seu gráfica encontra – se abaixo do eixo x
( ) Quando ∆ > 0 a função quadrática possui duas raízes iguais
( ) Quando a < 0 a concavidade da parábola está voltada para cima
( ) Quando ∆ < 0 a função quadrática não possui raízes reais
( ) O vértice da parábola é o valor máximo ou mínimo da função quadrática
Respostas
V,F,F,V,F,F,V,V
V- Uma função é positiva, ou maior que zero (f(x) > 0), quando o seu gráfico se encontra acima do eixo x, da mesma forma que qualquer função é negativa, ou menor que zero (f(x) > 0), quando o seu gráfico se encontra abaixo do eixo x.
F- Se ∆ = 0 → há duas raízes reais e iguais (raiz ou zero duplo) Quando o discriminante (∆) de uma função quadrática é igual a zero, as duas raízes desta função são reais e iguais. Por isso, graficamente, a parábola toca o eixo x em um único ponto (x', 0) ou (x”, 0), já que x' = x”.
F- Se a > 0, a concavidade da parábola é voltada para cima. Se a < 0, a concavidade da parábola é voltada para baixo.
V- Só que nesse caso, para qualquer outro valor real de x a função é negativa, porque o seu gráfico está localizado abaixo do eixo x. Isso significa que não existe nenhum valor de x que torne a função positiva, e que qualquer valor de x diferente do valor das raízes, torna a função negativa
F- Se ∆ > 0 → há duas raízes reais e distintas
Se ∆ > 0 → há duas raízes reais e distintasQuando o discriminante (∆) de uma função quadrática é um valor positivo, as duas raízes desta função são reais e diferentes. Por isso, graficamente, a parábola corta o eixo x em dois pontos distintos (x', 0) e (x”, 0)
F- Se a < 0, a concavidade da parábola é voltada para baixo.
V- Se ∆ < 0 → não há raiz real (duas raízes complexas)
Se ∆ < 0 → não há raiz real (duas raízes complexas)Quando o discriminante (∆) de uma função quadrática é um valor negativo, nenhuma das duas raízes desta função é um número real. Por isso, graficamente, a parábola não determina nenhum ponto no eixo dos x.
V- O ponto de máximo e o ponto de mínimo de uma função do 2º grau são definidos pela concavidade da parábola, se está voltada para baixo ou para cima.
Espero ter ajudado ^_^
R
2- Explique as razões para que a Itália tenha se desenvolvido como o principal polo do Renascimento.
R:
3- Aponte 3 consequências do renascimento cultural para a Europa.
R:
4- Identifique um artista do renascimento e explique pelo menos uma obra de arte feita por ele.
R:
R:
6- Compare o pensamento dos renascentistas com o pensamento do homem medieval
R:
7- Aponte 3 características do Renascimento cultural europeu.