• Matéria: Matemática
  • Autor: katleengirlovrykn
  • Perguntado 5 anos atrás

cálculo de logaritmos decimais - calcule:

a) log 15

b) log 63

c) log 12

d) log 25
——
2

Respostas

respondido por: Anônimo
1

Explicação passo-a-passo:

a)

\sf log~15=log~(3\cdot5)

\sf log~15=log~3+log~5

\sf log~15=0,477+0,699

\sf \red{log~15=1,176}

b)

\sf log~63=log~(3^2\cdot7)

\sf log~63=log~3^2+log~7

\sf log~63=2\cdot log~3+log~7

\sf log~63=2\cdot0,477+0,845

\sf log~63=0,954+0,845

\sf \red{log~63=1,799}

c)

\sf log~12=log~(2^2\cdot3)

\sf log~12=log~2^2+log~3

\sf log~12=2\cdot log~2+log~3

\sf log~12=2\cdot0,301+0,477

\sf log~12=0,602+0,477

\sf \red{log~12=1,079}

d)

\sf log~\Big(\dfrac{25}{2}\Big)=log~25-log~2

\sf log~\Big(\dfrac{25}{2}\Big)=log~5^2-log~2

\sf log~\Big(\dfrac{25}{2}\Big)=2\cdot log~5-log~2

\sf log~\Big(\dfrac{25}{2}\Big)=2\cdot0,699-0,301

\sf log~\Big(\dfrac{25}{2}\Big)=1,398-0,301

\sf \red{log~\Big(\dfrac{25}{2}\Big)=1,097}

Perguntas similares