• Matéria: Matemática
  • Autor: odaglasj
  • Perguntado 5 anos atrás

Reduza ao primeiro quadrante, os seguintes ângulos:
a) Seno 120° e Cosseno 120°
b) Seno 135° e cosseno 135°
c) Seno 210° e cosseno210°
d) Seno 240° e cosseno 240°
e) Seno 315° e cosseno315°
f) Seno 330° e cosseno330°


Henrique87: a) sen 120= sen 60

Respostas

respondido por: CyberKirito
1

Caso tenha problemas para visualizar a resposta experimente abrir pelo navegador https://brainly.com.br/tarefa/34226964

\tt a)~\sf sen(120^\circ)=sen(60^\circ)=\dfrac{\sqrt{3}}{2}\\\sf cos(120^\circ)=-cos(60^\circ)=-\dfrac{1}{2}\\\tt b)~\sf sen(135^\circ)=sen(45^\circ)=\dfrac{\sqrt{2}}{2}\\\sf cos(135^\circ)=-cos(45^\circ)=-\dfrac{\sqrt{2}}{2}\\\tt c)~\sf sen(210^\circ)=-sen(30^\circ)=-\dfrac{1}{2}\\\sf cos(210^\circ)=-cos(30^\circ)=-\dfrac{\sqrt{3}}{2}\\\tt d)~\sf sen(240^\circ)=-sen(60^\circ)=-\dfrac{\sqrt{3}}{2}\\\sf cos(240^\circ)=-cos(60^\circ)=-\dfrac{1}{2}

\tt e)~\sf sen(315^\circ)=-sen(45^\circ)=-\dfrac{\sqrt{2}}{2}\\\sf cos(315^\circ)=cos(45^\circ)=\dfrac{\sqrt{2}}{2}\\\tt f)~\sf sen(330^\circ)=-sen(30^\circ)=-\dfrac{1}{2}\\\sf cos(330^\circ)=-cos(30^\circ)=-\dfrac{\sqrt{3}}{2}

Perguntas similares