• Matéria: Matemática
  • Autor: manuuh02
  • Perguntado 9 anos atrás

resolva as seguintes equações do segundo grau

a) x²-5x +6=0




b) x²-8x+12=0

Respostas

respondido por: LuanaSC8
6
A) ~~x^2-5x +6=0\\\\ a=1;~b=-5;~c=6\\\\\\  \Delta=b^2-4ac\to~ \Delta=(-5)^2-4.1.6\to~ \Delta=25-24\to~\boxed{ \Delta=1}\\\\ x' \neq x'' \\\\\\ x= \dfrac{-b \pm  \sqrt{ \Delta} }{2a} \to~~ x= \dfrac{-(-5) \pm  \sqrt{ 1} }{2.1} \to~~ x= \dfrac{5 \pm 1 }{2} \to\\\\\\ x'= \dfrac{5 +1 }{2} \to~~ x'= \dfrac{6 }{2} \to~~ \boxed{x'=3}\\\\\\ x'= \dfrac{5 -1 }{2} \to~~ x'= \dfrac{4 }{2} \to~~ \boxed{x'=2}\\\\\\\\\\ \large\boxed{S=\{2~;~3\}}







B)~~ x^{2} -8x+12=0\\\\ a=1;~b=-8;~c=12\\\\\\ \Delta=(-8)^2-4.1.12\to~ \Delta=64-48\to~\boxed{\Delta=16}\\\\ x'  \neq  x'' \\\\\\ x= \dfrac{-(-8)\pm  \sqrt{16} }{2.1} \to~~ x= \dfrac{8\pm  4 }{2} \to\\\\\\ x'= \dfrac{8+  4 }{2} \to~~ x'= \dfrac{12 }{2} \to~~  \boxed{x'=6}\\\\\\ x'= \dfrac{8-  4 }{2} \to~~ x'= \dfrac{4 }{2} \to~~  \boxed{x'=2}\\\\\\\\\\ \large\boxed{S=\{ 2~;~6\}}
respondido por: Anônimo
1
x² - 5x + 6 = 0
a = 1; b = - 5; c = 6

Δ = b² - 4ac
Δ = (-5)² - 4.1.6
Δ = 25 - 24
Δ = 1

x = - b +/- √Δ = - ( - 5) +/- √1
           2a                2.1

x = 5 + 1 = 6/2 = 3
        2

x = 5 - 1 = 4/2 = 2 
        2

R.: x = 3 e x = 2
-----------------------------------------
b)
x² - 8x + 12 = 0
a = 1; b = - 8; c = 12

Δ = b² - 4ac
Δ = (-8)² - 4.1.12
Δ = 64 - 48
Δ = 16

x = - b +/- √Δ = - ( - 8) +/- √16
           2a                2.1

x = 8 + 4 = 12/2 = 6
         2

x = 8 - 4 = 4/2 = 2
        2

R.: x = 6 e x = 2
Perguntas similares