• Matéria: Matemática
  • Autor: LaStefany
  • Perguntado 9 anos atrás

Calcule cos(2 arc sen 3/5) 

Respostas

respondido por: viniciushenrique406
7
Seja α o arco em questão

\displaystyle
\arcsin{\frac{3}{5}}=\alpha~\Leftrightarrow~\sin{\alpha}=\frac{3}{5}~~\wedge~~0\ \textless \ \alpha\ \textless \ \frac{\pi}{4}

Logo


\displaystyle
\cos{\left(2\arcsin{\frac{3}{5}}\right)}=\cos{2\alpha}=1-2\sin^2{\alpha}=1-2\left(\frac{3}{5}\right)^2=\frac{7}{25}











respondido por: CyberKirito
3

Caso esteja pelo app, e tenha problemas para visualizar esta resposta, experimente abrir pelo navegador https://brainly.com.br/tarefa/346961

                                                   

\sf cos\bigg(2~arc~sen\bigg(\dfrac{3}{5}\bigg)\bigg)\\\underline{\rm fac_{\!\!,}a}~arc~sen\bigg(\dfrac{3}{5}\bigg)=\theta\implies sen(\theta)= \dfrac{3}{5}\\\sf cos\bigg(2~arc~sen\bigg(\dfrac{3}{5}\bigg)\bigg)=cos(2\theta)\\\sf cos(2\theta)=1-2sen^2(\theta)\\\sf cos(2\theta)=1-2\cdot\bigg(\dfrac{3}{5}\bigg)^2\\\sf cos(2\theta)=1-2\cdot\dfrac{9}{25}=\dfrac{25-18}{25}\\\sf cos(2\theta)=\dfrac{7}{25}\\\underline{\rm portanto:}

\Large\boxed{\boxed{\boxed{\boxed{\sf cos\bigg(2~arc~sen\bigg(\dfrac{3}{5}\bigg)\bigg)=\dfrac{7}{25}}}}}\blue{\checkmark}

Perguntas similares