• Matéria: Matemática
  • Autor: yekixi2108
  • Perguntado 5 anos atrás

qual a resposta da questão ??

Anexos:

Respostas

respondido por: Anônimo
0

Explicação passo-a-passo:

\sf lim_{x~\to~0}~\Big(\dfrac{tg~5x}{x}\Big)

\sf =lim_{x~\to~0}~\Big(\dfrac{\frac{sen~5x}{cos~5x}}{x}\Big)

\sf =lim_{x~\to~0}~\Big(\dfrac{sen~5x}{cos~5x}\cdot\dfrac{1}{x}\Big)

\sf =lim_{x~\to~0}~\Big(\dfrac{sen~5x}{x}\cdot\dfrac{1}{cos~5x}\Big)

\sf =lim_{x~\to~0}~\Big(\dfrac{sen~5x}{x}\Big)\cdot\lim_{x~\to~0}~\Big(\dfrac{1}{cos~5x}\Big)

\sf =lim_{x~\to~0}~\Big(\dfrac{5\cdot sen~5x}{5x}\Big)\cdot\lim_{x~\to~0}~\Big(\dfrac{1}{cos~5x}\Big)

\sf =5\cdot lim_{x~\to~0}~\Big(\dfrac{sen~5x}{5x}\Big)\cdot\lim_{x~\to~0}~\Big(\dfrac{1}{cos~5x}\Big)

=> Limite fundamental:

\sf lim_{x~\to~0}~\Big(\dfrac{sen~x}{x}\Big)=1

\sf \Rightarrow~lim_{x~\to~0}~\Big(\dfrac{sen~5x}{5x}\Big)=1

Logo:

\sf lim_{x~\to~0}~\Big(\dfrac{tg~5x}{x}\Big)

\sf =5\cdot lim_{x~\to~0}~\Big(\dfrac{sen~5x}{5x}\Big)\cdot\lim_{x~\to~0}~\Big(\dfrac{1}{cos~5x}\Big)

\sf =5\cdot1\cdot\lim_{x~\to~0}~\Big(\dfrac{1}{cos~5\cdot0}\Big)

\sf =5\cdot\lim_{x~\to~0}~\Big(\dfrac{1}{cos~0}\Big)

\sf =5\cdot\lim_{x~\to~0}~\Big(\dfrac{1}{1}\Big)

\sf =5\cdot\lim_{x~\to~0}~1

\sf =5\cdot1

\sf =\red{5}

Perguntas similares