• Matéria: Matemática
  • Autor: thaysla2309gmailcom
  • Perguntado 5 anos atrás

a
41. Vinte alunos de uma classe participam de uma
prova
classificatória para Olimpíada de
Matemática. Se há três vagas para a Olimpíada,
de quantas formas poderão ser escolhidos os
alunos participantes?
a) 1349
b) 1140
c) 1750
d) 1978​

Respostas

respondido por: theschatten
2

Resposta:

b) 1140

Explicação passo-a-passo:

A conta a ser efetuada é:

 \frac{20!}{(20 - 3)!3!}  = 1140

Existe uma fórmula para combinação (em que a ordem das escolhas não importa) que é a seguinte:

 \frac{n!}{(n - p)!p!}

onde n é o número total das coisas que você tem e p é o número de coisas que você escolher entre as n.

A intuição disso é:

Dado que há 20 alunos e precisamos escolher 3, temos:

1) para a primeira escolha há 20 alunos

2) para a segunda escolha há 19 (os que restaram), e

3) para a terceira escolha, 18.

Assim, Temos 20*19*18 = 20!/(20-3)! formas de escolher nessa ordem os alunos. Mas, como não importa a ordem com a gente escolha eles (escolher o aluno A, aluno B e aluno C é igual a escolher o aluno B, depois A, depois C, por exemplo), temos que desconsiderar as permutações entre eles três, que corresponde a 3*2*1 = 3!

O número de possibilidades é então 20*19*18/3*2*1 = 1140

Perguntas similares