• Matéria: Matemática
  • Autor: betagatta85
  • Perguntado 5 anos atrás

Vilma é professora de Matemática e apresentou aos seus alunos a demonstração geométrica de uma importante relação. Ela construiu um trapézio com a justaposição de três triângulos retângulos, dois com catetos medindo pp e qq e um com catetos medindo rr. A figura abaixo apresenta um desses triângulos e o trapézio construído para essa demonstração.




Nessa demonstração, Vilma igualou a medida da área do trapézio (p2+2pq+q22)(p2+2pq+q22) com a medida correspondente à adição das medidas das áreas dos três triângulos justapostos (2pq+r22)(2pq+r22) .

Com relação às medidas pp, qq e rr desse triângulo retângulo, Vilma demonstrou que​

Respostas

respondido por: victorgabrielkisdefr
57

Resposta:

r2=p2+q2.

Explicação passo-a-passo:

confia no pai


beatrizsilva39599: Vou confiar, man
eduardaa1583: confiei mano
dedaleite909k9: confiei mano
gugasc: É o ciano
umabatatafemea: vou confiar
gabrielly12440: confiei
tdm28: confiado
cunhaallana1234: confie
respondido por: alissonhp2006
7

Resposta e explicação passo - a - passo:

Vilma acabou demonstrando que r² = p² + q². Letra a).

Anexei a figura da questão no final desta resolução, para facilitar o entendimento.

O próprio enunciado já nos diz como devemos resolver essa questão:

"Vilma igualou a medida da área do trapézio com a medida correspondente à adição das medidas das áreas dos três triângulos justapostos."

Vamos fazer o mesmo agora, ou seja, igualar as duas relações fornecidas no próprio enunciado da questão:

Eliminando os denominadores de ambas as frações, ficamos com:

Eliminando o termo 2pq dos dois lados, teremos:

O que é comprovado quando aplicamos o Teorema de Pitágoras no triângulo retângulo da figura da esquerda na questão:

(hipotenusa)² = soma dos quadrados dos catetos

r² = p² + q²

Esper ter ajudado ;)

Perguntas similares