2) Efetue as Divisões:
a) ( x + 2x + x): (+x) =
b) (x + x + x): (+x²) =
c) (3x4 - 6x + 10x2) : (-2x2) =
d) (x + x + xº): (-x) =
e) (3x?y - 18xy?) : (+3xy) =
f) (7xºy - 8x*y*) : (-2xy) =
g) (4x’y + 2xy - 6xy?) : (-2xy) =
} (20x" - 16* - 8x") : ( +4x^) =
Respostas
Resposta:
RESPOSTA:
Explicação passo-a-passo:
a)
\sf \dfrac{12x^2-8x}{+2x}=6x-4+2x12x2−8x=6x−4
b)
\sf \dfrac{3y^3+6y^2}{3y}=y^2+2y3y3y3+6y2=y2+2y
c)
\sf \dfrac{10x^2+6x}{-2x}=-5x-3−2x10x2+6x=−5x−3
d)
\sf \dfrac{4x^3-9x}{+3x}=\dfrac{4x^2}{3}-3+3x4x3−9x=34x2−3
e)
\sf \dfrac{15x^3-10x^2}{5x^2}=3x-25x215x3−10x2=3x−2
f)
\sf \dfrac{30x^2-20xy}{-10x}=-3x+2y−10x30x2−20xy=−3x+2y
g)
\sf \dfrac{-18x^2+8x}{+2x}=-9x+4+2x−18x2+8x=−9x+4
h)
\sf \dfrac{6x^2y-4xy^2}{-2x}=-3xy+2y^2−2x6x2y−4xy2=−3xy+2y2
2)
a)
\sf \dfrac{x^3+2x^2+x}{+x}=x^2+2x+1+xx3+2x2+x=x2+2x+1
b)
\sf \dfrac{x^2+x^3+x^4}{+x^2}=1+x+x^2+x2x2+x3+x4=1+x+x2
c)
\sf \dfrac{3x^4-6x^3+10x^2}{-2x^2}=\dfrac{-3x^2}{2}+3x-5−2x23x4−6x3+10x2=2−3x2+3x−5
d)
\sf \dfrac{x^7+x^5+x^3}{-x^2}=-x^5-x^3-x−x2x7+x5+x3=−x5−x3−x
e)
\sf \dfrac{3x^2y-18xy^2}{+3xy}=x-6y+3xy3x2y−18xy2=x−6y
f)
\sf \dfrac{7x^3y-8x^2y^2}{-2xy}=\dfrac{-7x^2}{2}+4xy−2xy7x3y−8x2y2=2−7x2+4xy
g)
\sf \dfrac{4x^2y+2xy-6xy^2}{-2xy}=-2x-1+3y−2xy4x2y+2xy−6xy2=−2x−1+3y
h)
\sf \dfrac{20x^{12}-16x^{8}-8x^5}{+4x^4}=5x^{8}-4x^4-2x+4x420x12−16x8−8x5=5x8−4x4−2x
i)
\sf \dfrac{3xy^4+9x^2y-12xy^2}{+3xy}=y^3+3x-4y+3xy3xy4+9x2y−12xy