Respostas
Resposta:
para construirmos os gráficos de outras equações quadráticas.
Inicialmente, apresenta-se uma simetria. Temos:
f(-2) = f(2) = 4
f(-1) = f(1) = 1
De um modo geral,
f(-x) = (-x)2 = x2 = f(x)
isto é, para todo x temos
f(-x) = f(x)
Função par
Quando uma função f satisfaz, para todo x do seu domínio, a propriedade
f(-x) = f(x)
ela se chama função par, e seu gráfico é simétrico em relação ao eixo-y.
Observação:
Podemos ter uma maior precisão no gráfico marcando mais pontos. Como não podemos marcar uma infinidade de pontos, admitimos uma certa dose de confiança de que o gráfico é aquele que desenhamos.
A curva obtida se chama parábola e toda equação quadrática y = a x2 + b x + c tem uma parábola como gráfico. O domínio da função é o conjunto dos números reais e seu conjunto imagem depende dos valores de a, b e c. Para a função f(x) = x2 o conjunto imagem é constituído por todos y 0.
Uma propriedade importante dessa parábola é que ela é simétrica em relação a uma reta vertical que se chama eixo de simetria. O gráfico da equação y = x2 é simétrico em relação ao eixo-y. Essa simetria deve-se ao fato de que f(-x) = (-x)2 = x2 = f(x) e que, portanto, a função é par.
A parábola tem um ponto de retorno, que se chama vértice. O vértice é a intersecção da parábola com o eixo de simetria.
No gráfico da equação y = x2 o vértice tem coordenadas (0; 0) e o valor mínimo da função é 0.
Note que, avançando da esquerda para a direita, a curva "desce" até a origem e depois "sobe". Dizemos que f é decrescente e que f é crescente.
f(x) = x2 é decrescente para x 0
Se x1 < x2, então f(x1) > f(x2)
f(x) = x2 é crescente para x 0
Se x1 < x2 , então f(x1) < f (x2)
FUNÇÃO CRESCENTE E FUNÇÃO DECRESCENTE
f é crescente sobre o intervalo I se f(x1) < f(x2) sempre que x1 < x2, em I
f é decrescente sobre o intervalo I se f(x1) > f(x2) sempre que x1 < x2, em I
Exemplo
Para a função f cujo gráfico está na figura, temos:
intervalo
crescimento/decrescimento
x - 2
-2 x 2
x 2
f decresce
f cresce
f decresce
Podemos usar o gráfico da equação y = x2 para construirmos os gráficos de outras funções quadráticas. Por exemplo, os gráficos das funções y = x2 + 1 e y = x2 - 1 podem ser obtidos do gráfico da equação y = x2 por translações verticais desse gráfico.
O gráfico de y = x2 + 1 é obtido deslocando o gráfico de y = x2 + 1 unidade para cima.
O gráfico de y = x2 -1 é obtido deslocando o gráfico de y = x2 1 unidade para baixo.
Também, podemos construir os gráficos das funções y = (x - 1)2 e y = (x + 1)2 a partir do gráfico de y = x2, fazendo translações horizontais desse gráfico.
O gráfico de y = (x - 1)2 é obtido deslocando o gráfico de y = x2 1 unidade para direita. O vértice está em (1;0) e o eixo de simetria é a reta x = 1.
O gráfico de y = (x + 1)2 é obtido deslocando o gráfico de y = x2 uma unidade para a esquerda. O vértice está em (-1;0) e o eixo de simetria é a reta x = - 1.
Nos gráficos que construímos até aqui, o coeficiente de x2 é 1. Se o coeficiente é -1, o efeito sobre o gráfico é uma reflexão em relação ao eixo-x.
Então, para a função y = - x2 o domínio continua sendo o conjunto dos números reais, mas o conjunto imagem é o conjunto dos números reais y tais que y 0.
O gráfico de y = - x2 é obtido por reflexão do gráfico de y = x2 em torno do eixo-x.
Vimos que o gráfico de y = x2 tem um ponto de retorno no vértice; ele se dobra "para cima". Dizemos que a curva tem concavidade para cima. O gráfico de y = - x2 se dobra para baixo; dizemos que a curva tem concavidade para baixo.
Quando o coeficiente a em y = a x2 é diferente de 1, o gráfico dessa função pode ser obtido multiplicando a ordenada y, dos pontos de y = x2, pelo número a, como nos exemplos abaixo.
Cada ordenada é a metade da ordenada do gráfico de y = x2.
Cada ordenada é o dobro da ordenada do gráfico de y = x2.
Note que o gráfico de y = 2 x2 está "mais levantado" em relação ao gráfico de y = x2; o gráfico de y = 2 x2 "se afasta" do eixo-x. O gráfico de y = x2 "se aproxima" do eixo-x.
Exercícios
1. Desenhar o gráfico da função y = - x2 + 3. Dizer onde a função é crescente ou decrescente. Qual é o conjunto-imagem da função?
Resolução
Partimos do gráfico de y = - x2; deslocando-o de 3 unidades "para cima", obtemos o gráfico de y = - x2 + 3.
A função y = - x2 + 3 é crescente para x ≤ 0 e é decrescente para x ≥ 0. Seu conjunto-imagem é constituído por todos y tais que y ≤ 3.
2. Desenhar o gráfico da função y = f(x) = (x + 2)2 - 2.
Resolução
Partimos do gráfico da função y = x2. Deslocando-o "para a esquerda" de 2 unidades, obtemos o gráfico de y = (x + 2)2; depois, deslocando-o "para baixo" de 2 unidades, obtemos o gráfico de y = f(x) = (x + 2)2 - 2.
Note que o conjunto-imagem da função f é constituído por todos y tais que y -2.
3. Desenhar o gráfico da parábola y = 2 (x - 2)2 + 1.
Resolução
Então, deslocando-o 1 unidade "para cima" obtemos o gráfico de y = 2 (x - 2)2 = 1.
O vértice da parábola é o ponto V (2; 1) e o eixo de simetria tem equação x = 2.