• Matéria: Matemática
  • Autor: lidiasantostaua
  • Perguntado 5 anos atrás

FAÇA A RELAÇÃO DAS CORDAS E CALCULE O VALOR DE X. *

4.

6.

2.

0.

Anexos:

Respostas

respondido por: nicolasprozin01
0

Resposta:

Relações métricas são propriedades que possibilitam o cálculo de medidas de comprimento de algumas figuras geométricas e de seus elementos. Assim, a partir da relação entre cordas de uma circunferência, é possível encontrar algumas medidas do comprimento dessas cordas por meio de uma propriedade bem definida com cálculo simples.

Para facilitar a compreensão dos cálculos, relembraremos, primeiro, as definições básicas de circunferência e corda.

Definição de circunferência e de corda

Para dado ponto O, chamado centro, a circunferência de raio r é o conjunto de pontos cuja distância até o ponto O é igual a r. Um de seus elementos é a corda, definida como segmento de reta que liga dois pontos pertencentes a uma circunferência. Assim, um diâmetro fica definido como a maior corda que uma circunferência possui, ou como a corda que passa pelo centro dela.



Cordas no interior de uma circunferência

Relação entre cordas

Na imagem a seguir, observe a circunferência c, de raio r e centro O. Nessa figura, construímos duas cordas, o segmento AB e o segmento CD, que se encontram no ponto P.



Nessas circunstâncias, os segmentos formados pelas cordas são proporcionais conforme a igualdade:

AP = CP

DP    BP

Usando a propriedade fundamental das proporções, temos:

AP·BP = CP·DP

Essas igualdades podem ser usadas para encontrar a medida de um dos quatro segmentos de reta definidos pelas cordas da circunferência quando as medidas dos outros três são conhecidas.

Exemplo: Determine o valor de x na imagem abaixo:



Solução: Basta usar uma das igualdades dadas acima para descobrir o valor de x.

AP·BP = CP·DP

8·3 = x·4

24 = x

4      

respondido por: bruno283453
0

Resposta:

A resposta e 6

Explicação passo-a-passo:


lidiasantostaua: cálculo?
Perguntas similares