• Matéria: Matemática
  • Autor: anabrito2019
  • Perguntado 5 anos atrás

uma caixa cúbica tem 3 cm de aresta. Quantas dessas caixas cabem em um paralelepípedo que tem 54 dm cúbico de volume???

Respostas

respondido por: kimberlycarlos177
1

O volume da caixa cúbica equivale a:

V \ \ = \ \ a^{3} \\\\ V \ \ = \ 3^{3} \\\\ \boxed{ \ V \ \ = \ \ 27 \ }

Podemos descobrir quantas caixas cabem no paralelepípedo dividindo cada volume entre si:

54 \ \div \ 27 \ \ = \ \ \boxed{ \ 2 \ }

RESPOSTA:

⇒   Cabem \ \ 2 \ \ caixas

Anexos:

anabrito2019: mano eu to no 5 ano eu nao sei fazer caculos assim
kimberlycarlos177: Entendo

Mas é bem simples. Quando temos uma forma que nem uma caixa, nós calculamos o volume. Cada forma tem a sua fórmula. A fórmula do cubo, por exemplo, é aresta³. Se a aresta desse cubo mede 3 cm, então temos 3³ = 3 . 3 . 3 = 27.

Aí nós dividimos o volume do paralelepípedo pelo da caixa. O resultado, que é 2, é a quantidade de cubos que cabem no paralelepípedo :)
Perguntas similares