Encontre a área total do tronco do cone que apresenta altura de 4 cm, a base maior um círculo de diâmetro de 12 cm e a base menor um círculo de diâmetro de 8 cm.
a. (52+20√5)π cm²
b. (20+52√5)π cm²
c. (52+20√3)π cm²
d. (20+52√3)π cm²
Respostas
Resposta:
1) A
2) D
Explicação passo-a-passo:
Classroom.
1 ponto
a) biocombustíveis, petróleo e carvão mineral.
b) energia solar, energia eólica e urânio.
c) energia hidrelétrica, energia solar e biocombustíveis.
d) urânio, gás natural e energia hidrelétrica.
Resposta:
Alternativa A
Explicação passo-a-passo:
Para encontrar a área total desse tronco de cone, é necessário encontrar as áreas da base maior, menor e ainda, da lateral.
Além disso, é importante lembrar o conceito de diâmetro, que equivale duas vezes a medida do raio (d = 2r). Assim, pelas fórmulas temos:
Área da Base Menor
Ab = π.r²
Ab = π.4²
Ab = 16π cm²
Área da Base Maior
AB = π.R²
AB = π.6²
AB = 36π cm²
Área Lateral
Antes de encontrar a área lateral, temos que encontrar a medida da geratriz da figura:
g² = (R – r)² + h²
g² = (6 – 4)² + 4²
g² = 20
g = √20
g = 2√5
Feito isso, vamos substituir os valores na fórmula da área lateral:
Al = π.g. (R + r)
Al = π . 2√5 . (6 + 4)
Al = 20π√5 cm²
Área Total
At = AB + Ab + Al
At = 36π + 16π + 20π√5
At = (52 + 20√5)π cm²