• Matéria: Matemática
  • Autor: Anônimo
  • Perguntado 5 anos atrás

alguem me ajuda essa ? ficarei grato eternamente
Usando a regra da cadeia determine as derivadas das funções a seguir:

Anexos:

Respostas

respondido por: Anônimo
2

Explicação passo-a-passo:

a)

\sf f(x)=ln~(x^2+3)

\sf y=ln~(x^2+3)

Seja \sf u=x^2+3

\sf y=ln~u

Regra da cadeia:

\sf \dfrac{dy}{dx}=\dfrac{dy}{du}\cdot\dfrac{du}{dx}

Temos:

\sf y=ln~u

\sf \dfrac{dy}{du}=\dfrac{1}{u}

\sf u=x^2+3

\sf \dfrac{du}{dx}=(x^2+3)'

\sf \dfrac{du}{dx}=2x

Assim:

\sf \dfrac{dy}{dx}=\dfrac{dy}{du}\cdot\dfrac{du}{dx}

\sf \dfrac{dy}{dx}=\dfrac{1}{u}\cdot 2x

\sf \dfrac{dy}{dx}=\dfrac{1}{x^2+3}\cdot 2x

\sf \red{\dfrac{dy}{dx}=\dfrac{2x}{x^2+3}}

b)

\sf y=\Big(\dfrac{x+1}{x^2+1}\Big)^4

Seja \sf u=\dfrac{x+1}{x^2+1}

\sf y=u^4

Regra da cadeia:

\sf \dfrac{dy}{dx}=\dfrac{dy}{du}\cdot\dfrac{du}{dx}

Temos:

\sf y=u^4

\sf y=4\cdot u^3

\sf u=\dfrac{x+1}{x^2+1}

Regra do quociente:

\sf \Big(\dfrac{f}{g}\Big)'=\dfrac{f'\cdot g-f\cdot g'}{g^2}

\sf u=\dfrac{x+1}{x^2+1}

\sf \dfrac{du}{dx}=\dfrac{(x+1)'\cdot(x^2+1)-(x+1)\cdot(x^2+1)'}{(x^2+1)^2}

\sf \dfrac{du}{dx}=\dfrac{1\cdot(x^2+1)-(x+1)\cdot2x}{(x^2+1)^2}

\sf \dfrac{du}{dx}=\dfrac{x^2+1-2x^2-2x}{(x^2+1)^2}

\sf \dfrac{du}{dx}=\dfrac{1-2x-x^2}{(x^2+1)^2}

Assim:

\sf \dfrac{dy}{dx}=\dfrac{dy}{du}\cdot\dfrac{du}{dx}

\sf \dfrac{dy}{dx}=4\cdot u^3\cdot\dfrac{1-2x-x^2}{(x^2+1)^2}

\sf \dfrac{dy}{dx}=4\cdot\Big(\dfrac{x+1}{x^2+1}\Big)^3\cdot\dfrac{1-2x-x^2}{(x^2+1)^2}

\sf \red{\dfrac{dy}{dx}=\dfrac{4\cdot(x+1)^3\cdot(1-2x-x^2)}{(x^2+1)^5}}

Perguntas similares