• Matéria: Matemática
  • Autor: daviSlva
  • Perguntado 9 anos atrás

Calcule
a)(a+b)^3
b)(1-2a)^3
c(2x+y)^3
d(4y-1)^3

Respostas

respondido por: MATHSPHIS
15
a) \ (a+b)^3=(a+b)(a+b)^2=a+b)(a^2+2ab+b^2)=\\
=a^3+3 a^2 b+3 a b^2+b^3\\
\\b) \ (1-2a)^3=(1-2a)(1-2a)^2=(1-2a)(1-4a+4a^2)=\\
=-8 a^3+12 a^2-6 a+1\\
\\c) \ (2x+y)^3=(2x+y)(2x+y)^2=(2x+y)(4x^2+4xy+y^2)=\\
=8 x^3+12 x^2 y+6 x y^2+y^3\\
\\d \ (4y-1)^3=(4y-1)(4y-1)^2=(4y-1)(16y^2-8y+1)=\\
=64 y^3-48 y^2+12 y-1
respondido por: Makaveli1996
4

Oie, Td Bom?!

a)

 = (a + b) {}^{3}

 = a {}^{3}  + 3a {}^{2} b + 3ab {}^{2}  + b {}^{3}

b)

 = (1 - 2a) {}^{3}

 = 1 {}^{3}  - 3 \: . \: 1 {}^{2}  \: . \: 2a + 3 \: . \: 1 \: . \: (2a) {}^{2}  - (2a) {}^{3}

 = 1 - 6a + 12a {}^{3}  - 8a {}^{3}

 =  - 8a {}^{3}  + 12a {}^{2}  - 6a + 1

c)

 = (2x + y) {}^{3}

 = (2x) {}^{3}  + 3 \: . \: (2x) {}^{2}  \: . \: y + 3 \: . \: 2xy {}^{2}  + y {}^{3}

 = 8x {}^{3}  + 3 \:  .\: 4x {}^{2} y + 6xy {}^{2}  + y {}^{3}

 = 8x {}^{3}  + 12x {}^{2} y + 6xy {}^{2}  + y {}^{3}

d)

 = (4y - 1) {}^{3}

 = (4y) {}^{3}  - 3 \: . \: (4y) {}^{2}  \: . \: 1 + 3 \: . \: 4y \: . \: 1 {}^{2}  -1  {}^{3}

 = 64y {}^{3}  - 3 \: . \: 16y {}^{2}  \: . \: 1 + 3 \: . \: 4y \: . \: 1 - 1

 = 64y {}^{3}  - 48y {}^{2}  + 12y - 1

Att. Makaveli1996

Perguntas similares