Respostas
Explicação passo-a-passo:
Olá!!
Resolução
1)
x² - x - 2 = 0
Coeficientes
a = 1 , b = - 1 , c = - 2
Determinante
∆ = b² - 4ac
∆ = ( - 1 )² - 4 • 1 • ( - 2 )
∆ = 1 + 8
∆ = 9
Bhaskara
x = - b ± √∆ / 2a
x = - ( - 1 ) ± √9 / 2 • 1
x = 1 ± 3/2
x' = 1 + 3/2 = 4/2 = 2
x" = 1 - 3/2 = - 2/2 = - 1
S = { - 1, 2 }
2°)
x² + 3x - 4 = 0
Coeficientes
a = 1 , b = 3 , c = - 4
Determinante
∆ = b² - 4ac
∆ = 3² - 4 • 1 • ( - 4 )
∆ = 9 + 16
∆ = 25
Bhaskara
x = - b ± √∆/2a
x = - 3 ± √25/2 • 1
x = - 3 ± 5 /2
x' = - 3 + 5/2 = 2/2 = 1
x" = - 3 - 5/2 = - 8/2 = - 4
S = { - 4, 1 }
3)
2x² + 8x + 6 = 0 : 2
x² + 4x + 3 = 0
Coeficientes
a = 1, b = 4 , c = 3
Determinante
∆ = b² - 4ac
∆ = 4² - 4 • 1 • 3
∆ = 16 - 12
∆ = 4
Bhaskara
x = - b ± √∆/2a
x = - 4 ± √4/2 • 1
x = - 4 ± 2/2 • 1
x' = - 4 + 2/2 = - 2/2 = - 1
x" = - 4 - 2/2 = - 6/2 = - 3
S = { - 3, - 1 }
4)
4x² + 25x + 5 = 0
Coeficientes
a = 4, b = 25, c = 5
Determinante
∆ = b² - 4ac
∆ = 25² - 4 • 4 • 5
∆ = 625 - 80
∆ = 545
x = - b ± √∆/2a
x = - 25 ± √545/2 • 4
x = - 25 ± √545/8
x' = - 25 + √545/8
x" = - 25 - √545/8
S = { - 25 - √545/8, - 25 + √545/8 }
5)
- 2x² - 5x - 3 = 0
Coeficientes
a = - 2 , b = - 5, c = - 3
Determinante
∆ = b² - 4ac
∆ = ( - 5 )² - 4 • ( - 2 ) • ( - 3 )
∆ = 25 - 24
∆ = 1
Bhaskara
x = - b ± √∆/2a
x = - ( - 5 ) ± √1 /2 • ( - 2 )
x = 5 ± 1 /( - 2 )
x' = 5 + 1/( - 2 ) = 6/( - 2 ) = - 3
x" = 5 - 1/( - 2 ) = 4/( - 2 ) = - 2
S = { - 3, - 2 }
Espero ter ajudado!!! ^-^