• Matéria: Matemática
  • Autor: yagocsc
  • Perguntado 5 anos atrás

Qual a solucao em IR (reais) de sen x = -1/2

Respostas

respondido por: CyberKirito
3

Caso esteja pelo app, e tenha problemas para visualizar esta resposta, experimente abrir pelo navegador https://brainly.com.br/tarefa/37663611

                                                                                                                                 

\boxed{\begin{array}{c}\sf a~func_{\!\!,}\tilde ao~seno~\acute e~negativa~no~3^{\underline o}~e~4^{\underline o}~quadrantes\\\sf o~arco~cujo~seno~vale~\dfrac{1}{2}~\acute e~\dfrac{\pi}{6}.\\\sf~vamos~descobrir~os~arcos~c\hat ongruos~a~\dfrac{\pi}{6}~no~3^{\underline o}~e~4^{\underline o}~quadrantes.\end{array}}\\\underline{\sf no~3^{\underline o}~quadrante:}\\\sf \pi+\dfrac{\pi}{6}=\dfrac{6\pi+\pi}{6}=\dfrac{7\pi}{6}\\\underline{\sf no~4^{\underline o}~quadrante:}

\sf2\pi-\dfrac{\pi}{6}=\dfrac{12\pi-\pi}{6}=\dfrac{11\pi}{6}

\underline{\sf DA\acute I:}\\\sf sen(x)=-\dfrac{1}{2}\\\sf sen(x)=sen\left(\dfrac{7\pi}{6}\right)\\\sf x=\dfrac{7\pi}{6}+2k\pi~k\in\mathbb{Z}\\\sf sen(x)=-\dfrac{1}{2}\\\sf sen(x)=sen\left(\dfrac{11\pi}{6}\right)\\\sf x=\dfrac{11\pi}{6}+2k\pi~k\in\mathbb{Z}\\\boxed{\boxed{\boxed{\boxed{\sf S=\left\{x\in\mathbb{R}/ x=\dfrac{7\pi}{6}+2k\pi~k\in\mathbb{Z},x=\dfrac{11\pi}{6}+2k\pi,k\in\mathbb{Z}\right\}}}}}

Perguntas similares