• Matéria: Matemática
  • Autor: Luvier
  • Perguntado 5 anos atrás

Calcule o valor de x :
\Large\sf  {4}^{x}  +  {6}^{x}  =  {9}^{x}


saymogamer123hahaha: jhalle

Respostas

respondido por: Makaveli1996
11

Oie, Td Bom?!

4 {}^{x}  + 6 {}^{x}  = 9 {}^{x}

4 {}^{x}  + 6 {}^{x}  - 9 {}^{x}  = 0

(2{}^{2} ) {}^{x}  + (2 \: . \: 3) {}^{x}  - (3 {}^{2} ) {}^{x}

2 {}^{2x}  + (2 \: . \: 3) {}^{x}   - 3 {}^{2x}  = 0

2 {}^{2x}  + 2 {}^{x}  \: . \: 3 {}^{x}  - 3 {}^{2x}  = 0

  • Divida tudo por  3{}^{2x} .

( \frac{2}{3} ) {}^{2x}  + ( \frac{2}{3} ) {}^{x}  - 1 = 0

(( \frac{2}{3} ) {}^{x} ) {}^{2}  + ( \frac{2}{3} ) {}^{x}  - 1 = 0

  • Substitua  ( \frac{2}{3} ) {}^{x}  = t.

t {}^{2}  + t - 1 = 0

• Coeficientes:

a = 1 \: , \: b = 1 \:  ,\: c =  - 1

• Fórmula resolutiva:

x =  \frac{ - b± \sqrt{b {}^{2} - 4ac } }{2a}

t=  \frac{ - 1± \sqrt{1 {}^{2}  - 4 \: . \: 1 \: . \: ( - 1)} }{2 \: . \: 1}

t=  \frac{ - 1± \sqrt{1 + 4} }{2}

t=  \frac{ - 1± \sqrt{5} }{2}

  • Substitua t = ( \frac{2}{3} ) {}^{x} .

( \frac{2}{3} ) {}^{x}  =  \frac{ - 1 +  \sqrt{5} }{2}

 log_{ \frac{2}{3} }(( \frac{2}{3}) {}^{x}  )  =  log_{ \frac{2}{3} }( \frac{ - 1 +  \sqrt{5} }{2} )

x =  log_{ \frac{2}{3} }( \frac{ - 1 +  \sqrt{5} }{2} )

( \frac{2}{3} ) {}^{x}  =  \frac{ - 1 -  \sqrt{5} }{2}

x∉\mathbb{R}

S = \left \{ log_{ \frac{2}{3} }( \frac{ - 1 +  \sqrt{5} }{2} ) \right \}

Att. Makaveli1996


Luvier: Excelente resposta , Muito obrigado !
Makaveli1996: Obgd Mano E Bons Estudos! :D
Anônimo: Está de parabéns, como sempre ikk
Makaveli1996: Kk, Obgd ^^
respondido por: SwiftTaylor
3

EQUAÇÃO

                       LOGARITMA

\sf   \boldsymbol{\sf 4^x+6^x=9^x}\\\\\\\\\sf   \boldsymbol{\sf }

  • Divida ambos os lados por 4^x

\sf \displaystyle \boldsymbol{\sf \frac{4^x}{4^x}+\frac{6^x}{4^x}=\frac{9^x}{4^x}}

  • Simplifique

\sf \displaystyle \boldsymbol{\sf 1+\left(\frac{3}{2}\right)^x=\left(\frac{9}{4}\right)^x}

  • Agora aplique a propriedade dos expoentes.

\sf \displaystyle \boldsymbol{\sf 1+\left(\frac{3}{2}\right)^x=\left(\left(\frac{3}{2}\right)^x\right)^2}

  • Reescreva a equação com (3/2)^x=u

\sf \displaystyle \boldsymbol{\sf 1+u=\left(u\right)^2}

  • Resolver 1+u=(u)^2

\sf \displaystyle \boldsymbol{\sf u=\frac{1+\sqrt{5}}{2},\:u=\frac{1-\sqrt{5}}{2}}

  • Substitua u=(3/2)^x, e solucione x

\sf \displaystyle  \boldsymbol{\sf \left(\frac{3}{2}\right)^x=u=\frac{1+\sqrt{5}}{2}\Rightarrow x=\frac{\ln \left(\frac{1+\sqrt{5}}{2}\right)}{\ln \left(\frac{3}{2}\right)}}\\\\\\\\ \boldsymbol{\sf \left(\frac{3}{2}\right)^xu=\frac{1-\sqrt{5}}{2}\Rightarrow x\in\mathbb{R}}

\sf \therefore  \boxed{\sf S=\{\sf x=\frac{\ln \left(\frac{1+\sqrt{5}}{2}\right)}{\ln \left(\frac{3}{2}\right)}\approx 6811,18\cdots \}}

Veja mais em:

  • https://brainly.com.br/tarefa/6683275
  • https://brainly.com.br/tarefa/23606447
  • https://brainly.com.br/tarefa/33436597
  • https://brainly.com.br/tarefa/31469307
Perguntas similares