• Matéria: Matemática
  • Autor: ChaySoaresRodrigues
  • Perguntado 5 anos atrás

Ajudeeeemmmm poooor favoooooor Urgentee

Anexos:

Respostas

respondido por: PhillDays
2

.

\large\green{\boxed{~~~\red{1.}~
\blue{\sf~x = 1\green{,~}y = 3\green{~e~} z = 2~~~}}}

.

\large\green{\boxed{~~~\red{2.}~
\blue{\sf~x = 3\green{,~}y = 4\green{~e~} z = 5~~~}}}

.

\large\green{\boxed{\blue{~~~\red{3.}~\sf~x = 1\green{,~}y = 2\green{~e~} z = 3~~~}}}

.

\green{\rm\underline{EXPLICAC_{\!\!\!,}\tilde{A}O\ PASSO{-}A{-}PASSO\ \ \ }}

❄☃ \sf(\gray{+}~\red{cores}~\blue{com}~\pink{o}~\orange{App}~\green{Brainly}) ☘☀

.

☺lá novamente, Chay, como tens passado estes últimos dias⁉ E os estudos à distância deste ano, concluiu bem⁉ Espero que bem❗ Acompanhe a resolução abaixo, feita através de algumas manipulações algébricas, e após o resultado você encontrará um link com mais informações sobre Método de Cramer que talvez te ajude com exercícios semelhantes no futuro. ✌

.

1)\bf\large\red{\underline{\qquad\qquad\qquad\qquad\qquad\qquad\quad}}

.

\sf\large\blue{M =\left[\begin{array}{ccc}2&4&2\\\\4&2&-2\\\\6&-2&-4\\\end{array}\right]\left[\begin{array}{c}18\\\\6\\\\-8\\\end{array}\right]}

.

I) S___________________________✍

.

\sf\large\blue{S =\left[\begin{array}{ccc}2&4&2\\\\4&2&-2\\\\6&-2&-4\\\end{array}\right]\left[\begin{array}{cc}2&4\\\\4&2\\\\6&-2\\\end{array}\right]}

.

☔ Vamos agora encontrar as determinantes de nossas matrizes através do Método de Sarrus

.

\sf\blue{Det (S) = 2 \cdot 2 \cdot (-4) + 4 \cdot (-2) \cdot 6 + 2 \cdot 4 \cdot (-2) - 4 \cdot 4 \cdot (-4) - 2 \cdot (-2) \cdot (-2) - 2 \cdot 2 \cdot 6}

.

\large\gray{\boxed{\rm\blue{ Det (S) = -48 }}}

.

II) Sx__________________________✍  

.

☔ Trocando a 1ª coluna teremos

.

\sf\large\blue{S_x =\left[\begin{array}{ccc}18&4&2\\\\6&2&-2\\\\-8&-2&-4\\\end{array}\right]\left[\begin{array}{cc}18&4\\\\6&2\\\\-8&-2\\\end{array}\right]}

.

\large\gray{\boxed{\rm\blue{ Det (S_x) = -48 }}}

.

II) Sy__________________________✍

.

☔ Trocando a 2ª coluna teremos

.

\sf\large\blue{S_y =\left[\begin{array}{ccc}2&18&2\\\\4&6&-2\\\\6&-8&-4\\\end{array}\right]\left[\begin{array}{cc}2&18\\\\4&6\\\\6&-8\\\end{array}\right]}

.

\large\gray{\boxed{\rm\blue{ Det (S_y) = -144 }}}

.

II) Sz__________________________✍

.

☔ Trocando a 3ª coluna teremos

.

\sf\large\blue{S_z =\left[\begin{array}{ccc}2&4&18\\\\4&2&6\\\\6&-2&-8\\\end{array}\right]\left[\begin{array}{cc}2&4\\\\4&2\\\\6&-2\\\end{array}\right]}

.

\large\gray{\boxed{\rm\blue{ Det (S_z) = -96 }}}

.

III) Por fim, as soluções são

.

\sf\large\blue{x = \dfrac{Det(S_x)}{Det(S)} = \dfrac{-48}{-48} = 1}

.

\sf\large\blue{y = \dfrac{Det(S_y)}{Det(S)} = \dfrac{-144}{-48} = 3}

.

\sf\large\blue{z = \dfrac{Det(S_z)}{Det(S)} = \dfrac{-96}{-48} = 2}

.

\large\green{\boxed{~~~\red{1.}~
\blue{\sf~x = 1\green{,~}y = 3\green{~e~} z = 2~~~}}}

.

2)\bf\large\red{\underline{\qquad\qquad\qquad\qquad\qquad\qquad\quad}}

.

\sf\large\blue{M =\left[\begin{array}{ccc}1&1&1\\\\2&-1&2\\\\1&-1&-3\\\end{array}\right]\left[\begin{array}{c}12\\\\12\\\\-16\\\end{array}\right]}

.

☔ As soluções são

.

\sf\large\blue{x = \dfrac{Det(S_x)}{Det(S)} = \dfrac{36}{12} = 3}

.

\sf\large\blue{y = \dfrac{Det(S_y)}{Det(S)} = \dfrac{48}{12} = 4}

.

\sf\large\blue{z = \dfrac{Det(S_z)}{Det(S)} = \dfrac{60}{12} = 5}

.

\large\green{\boxed{~~~\red{2.}~
\blue{\sf~x = 3\green{,~}y = 4\green{~e~} z = 5~~~}}}

.

3)\bf\large\red{\underline{\qquad\qquad\qquad\qquad\qquad\qquad\quad}}

.

\sf\large\blue{M =\left[\begin{array}{ccc}1&2&-1\\\\2&-1&1\\\\1&1&1\\\end{array}\right]\left[\begin{array}{c}2\\\\3\\\\6\\\end{array}\right]}

.

☔ As soluções são

.

\sf\large\blue{x = \dfrac{Det(S_x)}{Det(S)} = \dfrac{-7}{-7} = 1}

.

\sf\large\blue{y = \dfrac{Det(S_y)}{Det(S)} = \dfrac{-14}{-7} = 2}

.

\sf\large\blue{z = \dfrac{Det(S_z)}{Det(S)} = \dfrac{-21}{-7} = 3}  

.

\large\green{\boxed{\blue{~~~\red{3.}~\sf~x = 1\green{,~}y = 2\green{~e~} z = 3~~~}}}

.

.

.

.

\bf\large\red{\underline{\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad}}

✈ Método de Cramer (https://brainly.com.br/tarefa/36041850)

✈ Determinante pelo Método de Sarrus (https://brainly.com.br/tarefa/36511536)

\bf\large\red{\underline{\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad}}

.

.

.

.

\bf\large\red{\underline{\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad}}

\bf\Large\blue{Bons\ estudos.}

(\large\orange{D\acute{u}vidas\ nos\ coment\acute{a}rios}) ☄

\bf\large\red{\underline{\qquad \qquad \qquad \qquad \qquad \qquad \quad }}\LaTeX

❄☃ \sf(\gray{+}~\red{cores}~\blue{com}~\pink{o}~\orange{App}~\green{Brainly}) ☘☀

.

.

.

.

\gray{"Absque~sudore~et~labore~nullum~opus~perfectum~est."}

Anexos:

ChaySoaresRodrigues: Obrigada
PhillDays: Disponha :)
ChaySoaresRodrigues: Me ajuda em questões de matemática? Vai no meu perfil e em minhas perguntas
PhillDays: Respondido :)
Perguntas similares