Respostas
Resposta:
a) y = - x + 2
b) y = x/9
c) y = √2(x/2 - 22)
Explicação passo-a-passo:
a)
f(2) = 2² - 5 . 2 + 6
f(2) = 4 - 10 + 6
f(2) = 10 - 10
f(2) = 0
mt = f'(x) = 2x - 5
mt = f'(2) = 2 . 2 - 5
mt = f'(2) = 4 - 5
mt = f'(2) = - 1
y - yo = m(x - x0)
y - 0 = - (x - 2)
y = - x + 2
b)
f(3) = (3 - 1)/(3 + 3)
f(3) = 2/6
f(3) = 2/2 . 1/3
f(3) = 1/3
mt = f'(x) = [(x - 1)'(x + 3) - (x - 1)(x + 3)']/(x + 3)²
mt = f'(x) = [(x + 3) - (x - 1)]/(x + 3)²
mt = f'(x) = (3 + 1)/(x + 3)²
mt = f'(x) = 4/(x + 3)²
mt = f'(3) = 4/(3 + 3)²
mt = f'(3) = 4/6²
mt = f'(3) = 4/36
mt = f'(3) = 1/9
y - y0 = m(x - x0)
y - 1/3 = 1/9(x - 3)
y - 1/3 = x/9 - 1/3
y = x/9
c)
f(45) = sen45
f(45) = √2/2
mt = f'(x) = senx'
mt = f'(x) = cosx
mt = f'(45) = cos45
mt = f'(45) = √2/2
y - yo = m(x - x0)
y - √2/2 = √2/2(x - 45)
y - √2/2 = x√2/2 - 45√2/2
y = x√2/2 - 45√2/2 + √2/2
y = x√2/2 - 44√2/2
y = x√2/2 - 22√2
y = √2(x/2 - 22)