• Matéria: Matemática
  • Autor: veraluciarabelo10
  • Perguntado 5 anos atrás

A diferença entre dois ângulos colaterais internos, formados por duas retas paralelas
cortadas por uma transversal, é de 85°15'.
A soma de todos ângulos obtusos formados por essas retas cortadas por uma
transversal é dada por

A)265°

B)265°15'.

C)274°15'.

D274°75'.

E)280°​

Respostas

respondido por: Mari2Pi
4

Resposta:

Alternativa B) 265°15´

Explicação passo-a-passo:

Acompanhe na figura anexa

Ângulos colaterais internos = "a" e "b"

A diferença = 85°15´ ⇒ a - b = 85°15´ (1ª)

Sabemos que a soma dos ângulos colaterais internos = 180°

então: a + b = 180° (2ª)

De acordo com a (1ª)

a - b = 85°15´

a = 85°15´ + b

Agora substituímos esse "a" na (2ª)

a + b = 180°

85°15´ + b + b = 180°

2b = 180 - 85°15´

2b = 94°45´

b = 94°45´ / 2

b = 47°22´30´´ ⇒ ângulo Agudo (menor que 90°)

Como a + b = 180

a + 47°22´30´´ = 180

a = 180 - 47°22´30´´

a = 132°37´30´´ ⇒ Ângulo obtuso (maior que 90°)

Em cada reta paralela teremos:

2 ângulos agudos congruentes e 2 ângulos obtusos congruentes.

Então a soma dos ângulos obtusos formados é:

2 (vezes) 132°37´30´´ = 264°74´60´´

como os minutos e segundos são maiores ou iguais a 60, vamos converter:

264°74´60´´ = 264°75´

Convertendo de novo

264°75´ = 265°15´ ⇒ alternativa B)

Atenção:

Repare que essa resposta é a soma dos ângulos obtusos de UMA reta cortada pela transversal, e não das DUAS retas.

Para calcular o total (duas retas) basta multiplicar por 4 e não por 2.

Anexos:

Mari2Pi: Se vc verificou, considerou e deseja marcar como MELHOR RESPOSTA, marque. Isso incentiva quem responde.
Perguntas similares