• Matéria: Matemática
  • Autor: Larissaitzzz
  • Perguntado 5 anos atrás

O valor do ângulo abaixo, é:

Anexos:

Respostas

respondido por: PhillDays
2

.

\Huge\green{\boxed{\rm~~~\gray{\alpha}~\pink{=}~\blue{ 80^{\circ} }~~~}}

.

\bf\large\green{\underline{\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad}}

\green{\rm\underline{EXPLICAC_{\!\!\!,}\tilde{A}O\ PASSO{-}A{-}PASSO\ \ \ }}

❄☃ \sf(\gray{+}~\red{cores}~\blue{com}~\pink{o}~\orange{App}~\green{Brainly}) ☘☀

.

☺lá, Larissa, como tens passado nestes tempos de quarentena⁉ E os estudos à distância, como vão⁉ Espero que bem❗ Acompanhe a resolução abaixo. ✌

.

☔ Inicialmente  vamos relembrar a seguinte propriedade das circunferências:

.

  • Um ângulo central (<180º) que "vê" um arco sempre terá o dobro do valor do ângulo inscrito que "vê" o mesmo arco, contanto que o ponto que forma o ângulo inscrito não esteja na corda daquele arco.

.

☔ Vamos portanto fazer algumas análises geométricas. Inicialmente vamos observar nossos ângulos centrais, que "vêem" os arcos AB e CD

.

\setlength{\unitlength}{0.95cm}\begin{picture}(6,5)\thicklines\bezier(-3,0)(-2.77,2.77)(0,3)\bezier(3,0)(2.77,2.77)(0,3)\bezier(-3,0)(-2.77,-2.77)(0,-3)\bezier(3,0)(2.77,-2.77)(0,-3)\put(-2.86,0.76){\circle*{0.13}}\put(-2.77,-1.06){\circle*{0.13}}\put(2.95,-0.4){\circle*{0.13}}\put(1.84,2.4){\circle*{0.13}}\put(0,0){\circle*{0.13}}\bezier(0,0)(-1.43,0.38)(-2.86,0.77)\bezier(0.0,0.0)(-1.38,-0.53)(-2.77,-1.06)\bezier(0.0,0.0)(1.47,-0.2)(2.95,-0.4)\bezier(0.0,0.0)(0.92,1.2)(1.84,2.4)\bezier(1.1,-0.1)(1,0.7)(0.6,0.8)\bezier(-1.1,-0.4)(-1.4,0)(-1.1,0.3)\put(-2.3,-0.3){\Large$\sf 60^{\circ}$}\put(1.3,0.6){\Large$\sf 100^{\circ}$}\put(-0.83,0.38){\circle*{0.13}}\end{picture}

\sf (Esta~imagem~n\tilde{a}o~\acute{e}~visualiz\acute{a}vel~pelo~App~Brainly ☹ )

.

.

☔ Tendo visualizado os ângulos centrais de 60º e 100º vamos agora analisar os ângulos inscritos. Primeiramente vamos observar o ângulo do vértice D que "vê" o arco AB

.

\setlength{\unitlength}{0.95cm}\begin{picture}(6,5)\thicklines\bezier(-3,0)(-2.77,2.77)(0,3)\bezier(3,0)(2.77,2.77)(0,3)\bezier(-3,0)(-2.77,-2.77)(0,-3)\bezier(3,0)(2.77,-2.77)(0,-3)\put(-4,-2){\line(4,3){7}}\put(-2.77,-1.06){\circle*{0.13}}\put(2.95,-0.4){\circle*{0.13}}\put(1.84,2.4){\circle*{0.13}}\bezier{50}(-2.77,-1.06)(0.09,-0.73)(2.95,-0.4)\bezier(-1.6,-0.9)(-1.5,-0.4)(-1.8,-0.35)\put(-1.3,-0.6){\Large$\sf 50^{\circ}$}\put(-0.83,0.38){\circle*{0.13}}\end{picture}

\sf (Esta~imagem~n\tilde{a}o~\acute{e}~visualiz\acute{a}vel~pelo~App~Brainly ☹ )

.

.

☔ Vamos agora observar o ângulo do vértice B que "vê" o arco DC

.

\setlength{\unitlength}{0.95cm}\begin{picture}(6,5)\thicklines\bezier(-3,0)(-2.77,2.77)(0,3)\bezier(3,0)(2.77,2.77)(0,3)\bezier(-3,0)(-2.77,-2.77)(0,-3)\bezier(3,0)(2.77,-2.77)(0,-3)\put(-4,1){\line(5,-1){8}}\put(-2.86,0.76){\circle*{0.13}}\put(-2.77,-1.06){\circle*{0.13}}\put(2.95,-0.4){\circle*{0.13}}\bezier{50}(-2.77,-1.06)(0.09,-0.73)(2.95,-0.4)\bezier(1.6,-0.55)(1.4,-0.3)(1.6,-0.15)\put(0.6,-0.5){\Large$\sf 30^{\circ}$}\put(-0.83,0.38){\circle*{0.13}}\end{picture}

\sf (Esta~imagem~n\tilde{a}o~\acute{e}~visualiz\acute{a}vel~pelo~App~Brainly ☹ )

.

.

☔ Com isso temos 2 dos 3 ângulos internos do triângulos DBI.

.

\setlength{\unitlength}{0.95cm}\begin{picture}(6,5)\thicklines\bezier(-3,0)(-2.77,2.77)(0,3)\bezier(3,0)(2.77,2.77)(0,3)\bezier(-3,0)(-2.77,-2.77)(0,-3)\bezier(3,0)(2.77,-2.77)(0,-3)\put(-4,-2){\line(4,3){7}}\put(-4,1){\line(5,-1){8}}\put(-0.83,0.38){\circle*{0.13}}\put(-2.86,0.76){\circle*{0.13}}\put(-2.77,-1.06){\circle*{0.13}}\put(2.95,-0.4){\circle*{0.13}}\put(1.84,2.4){\circle*{0.13}}\bezier(1.6,-0.55)(1.4,-0.3)(1.6,-0.15)\put(0.8,-0.5){\large$\sf 30^{\circ}$}\bezier{50}(-2.77,-1.06)(0.09,-0.73)(2.95,-0.4)\bezier(-1.6,-0.9)(-1.5,-0.4)(-1.8,-0.35)\put(-1.5,-0.7){\large$\sf 50^{\circ}$}\bezier(-1.3,0)(-0.7,-0.4)(0,0.2)\put(-0.7,-0.6){\large$\sf \beta$}\bezier(0,1)(0.6,0.9)(0.6,0.1)\put(1,0.5){\large$\sf \alpha$}\end{picture}

\sf (Esta~imagem~n\tilde{a}o~\acute{e}~visualiz\acute{a}vel~pelo~App~Brainly ☹ )

.

.

☔ Daqui temos que

.

\large\blue{\text{$\sf 30 + 50 + \beta = 180 $}}

\large\blue{\text{$\sf 80 + \beta = 180 $}}

\large\blue{\text{$\sf \beta = 180 - 80 $}}

\large\blue{\text{$\sf \beta = 100 $}}

.

☔ Analisando os ângulos que nos restam sabemos que α e β são ângulos suplementares, ou seja, juntos formam 180º, ou seja

.

\large\blue{\text{$\sf \alpha + \beta = 180 $}}

\large\blue{\text{$\sf \alpha + 100 = 180 $}}

\large\blue{\text{$\sf \alpha = 180 - 100 $}}

\large\blue{\text{$\sf \alpha = 80 $}}

.

\Huge\green{\boxed{\rm~~~\gray{\alpha}~\pink{=}~\blue{ 80^{\circ} }~~~}}

.

.

.

.

_______________________________☁

☕ Bons estudos.

(Dúvidas nos comentários) ☄

__________________________\LaTeX

❄☃ \sf(\gray{+}~\red{cores}~\blue{com}~\pink{o}~\orange{App}~\green{Brainly}) ☘☀

.

.

.

.

"Absque sudore et labore nullum opus perfectum est."

Anexos:
Perguntas similares