• Matéria: Matemática
  • Autor: KeroKerobonito
  • Perguntado 5 anos atrás

No triangulo retângulo da figura,calcule :

Anexos:

Respostas

respondido por: binho193
1

Resposta:

Explicação passo-a-passo:

resposta nas imagens.

Anexos:
respondido por: GabrielStavick
1

1)

a) primeiro vamos calcular a hipotenusa:

h²=ca²+co²

h²=8²+6²

h²=64+36

h=\sqrt[2]{100}=10

sen a=co/h

sen a=6/10

sen a=0,6

b)

cos a=ca/h

cos a=8/10

cos a=0,8

c)

tg a=co/ca

tg a=6/8

tg a=0,75

d)

sen b=co/h

sen b=8/10

sen b=0,8

e)

cos b=ca/h

cos b=6/10

cos b=0,6

f)

tg b=co/ca

tg b=8/6

tg b=1,33

A 2 não consegui ler o enunciado, se quiser postar outra imagem...

3) temos um angulo de 90º e outro angulo de 30º, sabemos que a soma dos angulos internos de um triangulo é 180º então o ângulo Beta=60º

Pelo teorema dos senos:

(veja imagem em anexo para entender melhor)

\frac{a}{sen A}=\frac{b}{sen B}

\frac{30}{sen B} +\frac{x}{sen A}

\frac{30}{\sqrt[2]{3} /2} =\frac{x}{1/ 2} os 2 denominadores são divididos por 2, então podemos cortar, fica:

\frac{30}{\sqrt[2]{3} } =\frac{x}{1} fazendo regra de tres

x\sqrt[2]{3}=30.1

x=\frac{30}{\sqrt[2]{3} }

podemos racionalizar a raiz

\frac{30}{\sqrt[2]{3} }.\frac{\sqrt[2]{3}}{\sqrt[2]{3} }

x=30

Anexos:
Perguntas similares