• Matéria: Matemática
  • Autor: malexsandra22
  • Perguntado 5 anos atrás

resolva a equação log4²(x)-2log4(x)-3=0 um​

Respostas

respondido por: Gausss
0

Resposta:

X=1/32

Explicação passo-a-passo:

 log_{4}(2x)  - 2 log_{4}(x )  - 3 = 0 \\  \\ log_{ {2}^{2} }(2x)  - 2 log_{  {2}^{2} }(x )  - 3 = 0 \\  \\  \dfrac{1}{2} log_{ 2 }(2x)  -  \dfrac{2}{2} log_{ 2 }(x )  - 3 = 0 \\  \\ \dfrac{1}{2} log_{ 2 }(2)   + \dfrac{1}{2} log_{ 2 }(x)-  \dfrac{2}{2} log_{ 2 }(x )  - 3 = 0 \\  \\    + \dfrac{1}{2} log_{ 2 }(x)-  log_{ 2 }(x ) = 0 - \dfrac{1}{2} + 3 \\  \\ (\dfrac{1}{2} - 1) log_{ 2 }(x)= 0 - \dfrac{1}{2} + 3 \\  \\  - \dfrac{1}{2}  log_{ 2 }(x)= \dfrac{5}{2}  \\  \\ log_{ 2 }(x)=  \dfrac{   \frac{5}{2} }{ -  \frac{1}{2} } \\  \\ log_{ 2 }(x) = -5 \\  \\  {2}^{-5} =x \\  \\ \boxed{\boxed{X=\dfrac{1}{32}}}

Perguntas similares