• Matéria: Matemática
  • Autor: henzogabriel45
  • Perguntado 5 anos atrás

resolva as inequaçoes exponenciais (alguém me ajuda, :(
eu imploro!!!​

Anexos:

Respostas

respondido por: marciocbe
1

Resposta:

Olá boa noite:

i)

 {5}^{x}   < 1

Colocando na mesma base:

1  =  {5}^{0}

Logo:

 {5}^{x}   <   {5}^{0}

Com as bases iguais, resolvem-se os expoentes.

x < 0

A solução de uma inequação não é apenas um valor e sim um intervalo. Pode ser dada por:

xER | x < 0

ou

]-oo;0[

m)

Neste caso, as bases já são iguais. Basta resolver os expoentes:

2x > x - 1

2x - x > 1

x >1

xER | x > 1

ou

]1;+oo[


henzogabriel45: obrigado!
marciocbe: eu que agradeço
respondido por: Kin07
1

Resposta:

i)

\sf  \displaystyle  5^x &lt; 1 \quad \gets \text{ \sf  transformar 1 em base 5 }

\sf  \displaystyle 5^x &lt; 5^0  \quad \gets \text{ \sf  Cancelar a  base 5 }

\boxed{ \boxed { \boldsymbol{ \sf  \displaystyle x &lt; 0 }}} \quad \gets \mathbf{ Resposta }

\boldsymbol{ \sf  \displaystyle S=\{x\in\mathbb{R}\mid x &lt; 0 \}}

m)

\sf  \displaystyle 5^{2x} &gt; 5^{x - 1}

\sf  \displaystyle  2x &gt; x - 1

\sf  \displaystyle 2x -x &gt; -\:1

\boxed{ \boxed { \boldsymbol{ \sf  \displaystyle x &gt; -\: 1 }}} \quad \gets \mathbf{ Resposta }

\boldsymbol{ \sf  \displaystyle S=\{x\in\mathbb{R}\mid x &gt; -\: 1 \}}

Explicação passo-a-passo:

Todo número elevado a zero é 1 ( um ).


henzogabriel45: vlw!!!!❤
Kin07: Obrigado mano.
Kin07: Muito obrigado pela melhor resposta.
Perguntas similares