• Matéria: Matemática
  • Autor: tulio2405
  • Perguntado 5 anos atrás

1- Dado o triângulo abaixo, determine o seno, cosseno e a tangente dos ângulos A e B. (Dica: Utilize o teorema de Pitágoras para encontrar o lado que está faltando).

Me ajude por favor é pra entregar hoje ​

Anexos:

Respostas

respondido por: Nasgovaskov
5

Primeiro veja que temos o valor apenas de dois lados, para descobrir o outro vamos aplicar Teorema de Pitágoras:

\boxed{\begin{array}{l}\sf hip^2=c^2+c^2\end{array}}\\\\

Assim, no triângulo retângulo temos:

  • hipotenusa: 13
  • catetos: 5, e um lado desconhecido (chamaremos de x)

~~

Dessa forma:

\begin{array}{l}\sf hip^2=c^2+c^2\\\\\sf13^2=5^2+x^2\\\\\sf169=25+x^2\\\\\sf x^2=169-25\\\\\sf x^2=144\\\\\sf\sqrt{x^2}=\sqrt{144}\\\\\!\boxed{\sf x=12}\end{array}

Assim, 12 é o valor do lado que está faltando.

~~

Agora temos que encontrar o seno, cosseno e a tangente dos ângulos alfa e beta. Essas são razões trigonométricas, e se relacionam com os lados do triângulo retângulo da seguinte forma:

  • seno = razão entre o cateto oposto e a hipotenusa;
  • cosseno = razão entre o cateto adjacente e a hipotenusa;
  • tangente = razão entre o cateto oposto e o cateto adjacente.

~~

Para usar uma dessas razões, os catetos vão depender do ângulo pois ele será a referência. Assim, temos que:

  • cateto oposto = é o cateto que é oposto ao ângulo;
  • cateto adjacente = é o cateto que fica ao lado do ângulo.

* Lembrando que a hipotenusa sempre será a mesma.

~~

Determinar as razões trigonométricas do ângulo alfa (α):

De acordo com o ângulo α, temos:

  • cateto oposto = 12
  • cateto adjacente = 5

~~

Seno:

\begin{array}{l}\sf sen(\alpha)=\dfrac{cateto~oposto}{hipotenusa}\\\\\!\boxed{\sf sen(\alpha)=\dfrac{12}{13}}\\\\\end{array}

Cosseno:

\begin{array}{l}\sf cos(\alpha)=\dfrac{cateto~adjacente}{hipotenusa}\\\\\!\boxed{\sf cos(\alpha)=\dfrac{5}{13}}\\\\\end{array}

Tangente:

\begin{array}{l}\sf tg(\alpha)=\dfrac{cateto~oposto}{cateto~adjacente}\\\\\!\boxed{\sf tg(\alpha)=\dfrac{12}{5}}\end{array}

~~

Determinar as razões trigonométricas do ângulo beta (β):

De acordo com o ângulo β, temos:

  • cateto oposto = 5
  • cateto adjacente = 12

~~

Seno:

\begin{array}{l}\sf sen(\beta)=\dfrac{cateto~oposto}{hipotenusa}\\\\\!\boxed{\sf sen(\beta)=\dfrac{5}{13}}\\\\\end{array}

Cosseno:

\begin{array}{l}\sf cos(\beta)=\dfrac{cateto~adjacente}{hipotenusa}\\\\\!\boxed{\sf cos(\beta)=\dfrac{12}{13}}\\\\\end{array}

Tangente:

\begin{array}{l}\sf tg(\beta)=\dfrac{cateto~oposto}{cateto~adjacente}\\\\\!\boxed{\sf tg(\beta)=\dfrac{5}{12}}\end{array}

~~

Att. Nasgovaskov

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Veja mais sobre:

https://brainly.com.br/tarefa/36371512

https://brainly.com.br/tarefa/34217484

https://brainly.com.br/tarefa/35442623

Anexos:

tulio2405: 2- A partir de um quadrado de lado L, trace neste quadrado a sua diagonal e através do teorema de Pitágoras calcule seu valor, depois calcule o seno, o cosseno e a tangente do ângulo de 45°

3- A partir de um triângulo equilátero de lado L, trace a altura deste triângulo e através do teorema de Pitágoras calcule seu valor, calcule o seno, o cosseno e tangente de 30° e 60°

Me ajude por favor ​
tulio2405: 1- Sabendo que cos a =3/5, calcule o seno e a tangente deste mesmo ângulo. (Dica: Forme um triângulo retângulo e chame algum dos ângulos agudos de a)
tulio2405: me ajude por favor é pra entregar hoje
Perguntas similares