• Matéria: Lógica
  • Autor: patipapum
  • Perguntado 5 anos atrás

(2.0) Construir as tabelas-verdades das seguintes proposições:

a) (p ∧ r) ∨ (~p → q)
b) ~(r ∧ ~q) ↔ p

Respostas

respondido por: PhillDays
6

⠀  

⠀⠀☞ Cada tabela verdade nos apresenta 8 possibilidades de solução, a depender da validade de cada uma das 3 proposições, sendo para o item a) 3/4 verdade e 1/4 falso e para o item b) 1/2 verdade e 1/2 falso. ✅  

⠀  

⠀⠀Inicialmente lembremos o que cada conectivo lógico representa:

\red{\boxed{\pink{\boxed{\begin{array}{rlclr}&&&&\\&\orange{\sf p \cup q}&\pink{\Longrightarrow}&\orange{\sf p~ou~q}&\\&&&&\\&\orange{\sf p \cap q}&\pink{\Longrightarrow}&\orange{\sf p~e~q}&\\&&&&\\&\orange{\sf p \rightarrow q}&\pink{\Longrightarrow}&\orange{\sf se~p~ent\tilde{a}o~q}&\\&&&&\\&\orange{\sf p \iff q}&\pink{\Longrightarrow}&\orange{\sf p~se,~e~somente~se,~q}&\\&&&&\\&\orange{\sf \tilde{}~p}&\pink{\Longrightarrow}&\orange{\sf n\tilde{a}o~p}&\\&&&&\\\end{array}}}}}

⠀  

⠀⠀ Como o enunciado não nos diz o valor V ou F para as proposições p, q e r então um total de 8 possibilidades de combinação para cada exercício. Vamos inicialmente registrar nossa tabela verdade padrão para nos auxiliar a montar as tabelas verdade de cada exercício:

\red{\boxed{\pink{\boxed{\orange{\begin{array}{c|c|c|c|c|c}&&&&&\\\sf ~p~~&\sf ~~q~~&\sf p \cup q&\sf p \cap q&\sf p \rightarrow q&\sf p \iff q\\&&&&&\\\sf V&\sf V&\sf V&\sf V&\sf V&\sf V\\&&&&&\\\sf V&\sf F&\sf V&\sf F&\sf F&\sf F\\&&&&&\\\sf F&\sf V&\sf V&\sf F&\sf V&\sf F\\&&&&&\\\sf F&\sf F&\sf F&\sf F&\sf V&\sf V\\&&&&&\\\end{array}}}}}}  

⠀⠀Construiremos cada tabela verdade a seguir a partir de 4 passos:

⠀⠀I) Construir a Tabela Verdade com uma coluna para cada proposição, uma coluna para cada lado da sentença lógica e uma coluna para a sentença lógica completa;

⠀⠀II) Preencher os valores V ou F para nossas 3 proposições p, q e r;

⠀⠀III) Verificar a validade dos dois lados da sentença lógica separados;

⠀⠀IV) Verificar a validade da sentença lógica completa.

a) (p ∧ r) ∨ (~p → q)  

\green{\boxed{\gray{\boxed{\blue{\begin{array}{c|c|c|c|c|c}&&&&&\\\sf ~p~~&\sf ~~q~~&\sf ~~r~~&\sf p \cap r&\sf \tilde{}~p \rightarrow q&\sf (p \cap r) \cup (~\tilde{}~p \rightarrow q)\\&&&&&\\\sf V&\sf V&\sf V&\sf V&\sf V&\boxed{\sf V}\\&&&&&\\\sf V&\sf V&\sf F&\sf F&\sf V&\boxed{\sf V}\\&&&&&\\\sf V&\sf F&\sf V&\sf V&\sf V&\boxed{\sf V}\\&&&&&\\\sf F&\sf V&\sf V&\sf F&\sf V&\boxed{\sf V}\\&&&&&\\\sf V&\sf F&\sf F&\sf F&\sf V&\boxed{\sf V}\\&&&&&\\\sf F&\sf V&\sf F&\sf F&\sf V&\boxed{\sf V}\\&&&&&\\\sf F&\sf F&\sf V&\sf F&\sf F&\boxed{\sf F}\\&&&&&\\\sf F&\sf F&\sf F&\sf F&\sf F&\boxed{\sf F}\\\end{array}}}}}}

b) ~(r ∧ ~q) ↔ p

\green{\boxed{\gray{\boxed{\blue{\begin{array}{c|c|c|c|c}&&&&\\\sf ~~q~~&\sf ~~r~~&\sf r \cap ~\tilde{}~q&\sf ~p~~&\sf ~\tilde{}~(r \cap ~\tilde{}~q) \iff p\\&&&&\\\sf V&\sf V&\sf F&\sf V&\boxed{\sf V}\\&&&&\\\sf V&\sf V&\sf F&\sf F&\boxed{\sf F}\\&&&&\\\sf V&\sf F&\sf F&\sf V&\boxed{\sf V}\\&&&&\\\sf F&\sf V&\sf V&\sf V&\boxed{\sf F}\\&&&&\\\sf V&\sf F&\sf F&\sf F&\boxed{\sf F}\\&&&&\\\sf F&\sf V&\sf V&\sf F&\boxed{\sf V}\\&&&&\\\sf F&\sf F&\sf F&\sf V&\boxed{\sf V}\\&&&&\\\sf F&\sf F&\sf F&\sf F&\boxed{\sf F}\\&&&&\\\end{array}}}}}}

⠀  

⠀  

⠀  

⠀  

\bf\large\red{\underline{\quad\quad\qquad\qquad\qquad\qquad\qquad\qquad\qquad}}  

⠀⠀☀️ Outros exercícios com tabela verdade:  

⠀  

✈ https://brainly.com.br/tarefa/38348117

✈ https://brainly.com.br/tarefa/38427233

\bf\large\red{\underline{\quad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad}}✍  

⠀  

⠀  

⠀  

⠀  

\bf\large\red{\underline{\quad\quad\qquad\qquad\qquad\qquad\qquad\qquad\qquad}}☁  

⠀⠀⠀⠀☕ \Large\blue{\text{\bf Bons~estudos.}}  

⠀  

(\orange{D\acute{u}vidas\ nos\ coment\acute{a}rios}) ☄  

\bf\large\red{\underline{\qquad \qquad \qquad \qquad \qquad \qquad \quad }}\LaTeX✍  

❄☃ \sf(\purple{+}~\red{cores}~\blue{com}~\pink{o}~\orange{App}~\green{Brainly}) ☘☀  

⠀  

⠀  

⠀  

⠀  

\gray{"Absque~sudore~et~labore~nullum~opus~perfectum~est."}  

Anexos:

PhillDays: Não se esqueça de avaliar (⭐) as respostas, agradecer (❤️) e até mesmo escolher como melhor resposta (♕) aquela que você concluir merecer: além de recuperar 25% dos pontos ofertados de volta ($.$) você também ajuda outros usuários a economizarem tempo (⌛) indo direto para a resposta que você acha mais os ajudará ☺✌.
Anônimo: ⭐⭐⭐⭐⭐
Perguntas similares