• Matéria: Matemática
  • Autor: luzarzar
  • Perguntado 5 anos atrás

Não entendi a resposta dessa questão

Anexos:

Respostas

respondido por: Worgin
0

\sqrt{\frac{x}{y}.\sqrt[3]{\frac{y}{x}.\sqrt[4]{\frac{x}{y}}} }=(\frac{y}{x})^p\\\\\sqrt{\frac{x}{y}.\sqrt[3]{\frac{y}{x}.(\frac{x}{y})^{\frac{1}{4}}}} }=(\frac{y}{x})^p\\\\\sqrt{\frac{x}{y}.\sqrt[3]{\frac{y}{x}.(\frac{x^{\frac{1}{4}}}{y^{\frac{1}{4}}})} }=(\frac{y}{x})^p\\\\\sqrt{\frac{x}{y}.\sqrt[3]{{y^{\frac{3}{4}}x^{\frac{-3}{4}}}}}=(\frac{y}{x})^p\\\\\sqrt{\frac{x}{y}.(\frac{y^{\frac{3}{4}}}{x^{\frac{3}{4}}})^{\frac{1}{3}}} }=(\frac{y}{x})^p

\sqrt{\frac{x}{y}.(\frac{y^{\frac{3}{4}}}{x^{\frac{3}{4}}})^{\frac{1}{3}}} }=(\frac{y}{x})^p\\\\\sqrt{\frac{x}{y}.(\frac{y^{\frac{1}{4}}}{x^{\frac{1}{4}}})} }=(\frac{y}{x})^p\\\\\sqrt{x^{\frac{3}{4}}.y^{\frac{-3}{4}}}=(\frac{y}{x})^p\\\\\sqrt{\frac{y^{\frac{-3}{4}}}{x^{\frac{-3}{4}}}}=(\frac{y}{x})^p\\\\(\frac{y^{\frac{-3}{4}}}{x^{\frac{-3}{4}}})^{\frac{1}{2}}=(\frac{y}{x})^p\\\\(\frac{y^{\frac{-3}{8}}}{x^{\frac{-3}{8}}})=(\frac{y}{x})^p\\\\(\frac{y}{x})^{\frac{-3}{8}}}=(\frac{y}{x})^p\\\\

p=\frac{-3}{8}

Perguntas similares