• Matéria: Matemática
  • Autor: veniciomarquesdasilv
  • Perguntado 5 anos atrás

O gráfico de uma função quadrática é uma curva chamada parábola. As parábolas podem ter a abertura voltada para cima ou para baixo. Dada às funções: f(x) = - x ² + 3x + 2, g(x) = x² + 6x – 9, h(x) = 9x² + 6x - 1, i (x) = -5x² + 3x - 7, é correto afirmar que a concavidade da parábola de cada função está voltada, respectivamente: *a) para cima, para baixo, para baixo, para cima. b) para baixo, para baixo, para baixo, para cima. c) para cima, para cima, para cima, para baixo. d) para baixo, para cima, para cima, para baixo. e) para cima, para baixo, para baixo, para baixo.

Respostas

respondido por: wack
2

Resposta:

Explicação passo-a-passo:

dada uma função quadrática f(x) = ax² + bx + c, o q determina se a parábola tem abertura pra cima ou pra baixo é o SINAL  do coeficiente 'a'.

Se a for positivo (+) a abertura é voltada pra cima

se a for negatico (-) a abertuda é voltada pra baixo

f(x) = -x² + 3x + 2    (a = -1, negativo, entao abertura pra baixo)

g(x) = x² + 6x - 9  (a = 1, positivo. entao abertura pra cima)

h(x) = 9x² + 6x - 1 (a = 9, positivo. entao, abertura para cima)

i(x) = -5x² + 3x - 7 (a = -5, negativo). entao, abertura para  baixo)

alternativa D

Perguntas similares