• Matéria: Matemática
  • Autor: meirielimirian
  • Perguntado 5 anos atrás

Calcule a integral.\int\limits^, {\frac{x}{\sqrt{x^2+x+1} } } \, dx

Respostas

respondido por: MatiasHP
2

Olá, siga a explicação:

"Dicas relevantes"

Sendo a integral indefinida:

\sf \displaystyle \int\limits \dfrac{x}{\sqrt{x^2 + x + 1} }

Completa o quadrado:

\boxed { \sf x^2+x+1 : & \left ( x+ \dfrac{1}{2}  \right ) ^2 + \dfrac{3}{4} }

\sf = \displaystyle \int\limits \dfrac{x}{\sqrt{ \left ( x+ \dfrac{1}{2}  \right ) ^2+ \dfrac{3}{4}  } } dx

Integral por Substituição:

\boxed {\sf u= x + \dfrac{1}{2} }

\sf = \displaystyle \int\limits \dfrac{2u -1}{\sqrt{4u^2 + 3}  } du

Expande:

\boxed { \sf \dfrac{2u - 1}{\sqrt{4u^2  + 3} }  : & \dfrac{2u}{\sqrt{4u^2 + 3} } - \dfrac{1}{\sqrt{4u^2 + 3} }   }

\sf =  \displaystyle \int\limits \dfrac{2u}{\sqrt{4u^2 + 3} }  - \dfrac{1}{\sqrt{4u^2 + 3} }  du

Regras De Soma:

\boxed {\sf \displaystyle \int\limits f(x) \pm g(x) dx= \displaystyle \int\limits f(x) dx \pm \displaystyle \int\limits g(x) dx}

\sf = \displaystyle \int\limits \dfrac{2u}{\sqrt{4u^2 + 3} } du - \displaystyle \int\limits \dfrac{1}{\sqrt{4u^2 + 3} } du

\boxed { \sf \displaystyle \int\limits \dfrac{2u}{\sqrt{4u^2 + 3} } du = \dfrac{1}{2} \sqrt{4u^2 + 3}   }

\boxed { \sf \displaystyle \int\limits \dfrac{1}{\sqrt{4u^2 + 3} } du = \dfrac{1}{2} In \left | \dfrac{2}{\sqrt{3} } u + \sqrt{\dfrac{1}{3} \left ( 3+ 4u^2 \right ) } \right |   }

\sf = \dfrac{1}{2} \sqrt{4u^2 + 3} - \dfrac{1}{2} In \left | \dfrac{2}{\sqrt{3}}u+\sqrt{\dfrac{1}{3}\left(3+4u^2\right)} \right |

Substituir na equação:

\boxed {\sf u= x +\dfrac{1}{2} }

\sf \dfrac{1}{2}\sqrt{4\left(x+\dfrac{1}{2}\right)^2+3}-\dfrac{1}{2}\ln \left|\dfrac{2}{\sqrt{3}}\left(x+\dfrac{1}{2}\right)+\sqrt{\dfrac{1}{3}\left(3+4\left(x+\dfrac{1}{2}\right)^2\right)}\right|

Simplifica:

\boxed { \sf \dfrac{1}{2}\sqrt{4\left(x+\dfrac{1}{2}\right)^2+3}-\dfrac{1}{2}\ln \left|\dfrac{2}{\sqrt{3}}\left(x+\dfrac{1}{2}\right)+\sqrt{\dfrac{1}{3}\left(3+4\left(x+\dfrac{1}{2}\right)^2\right)}\right| }

= \sf \sqrt{x^2+x+1}-\dfrac{1}{2}\ln \left|\dfrac{2}{\sqrt{3}}x+\dfrac{1}{\sqrt{3}}+\sqrt{\dfrac{4x^2+4x+4}{3}}\right|

\boxed { = \sf \sqrt{x^2+x+1}-\dfrac{1}{2}\ln \left|\dfrac{2}{\sqrt{3}}x+\dfrac{1}{\sqrt{3}}+\sqrt{\dfrac{4x^2+4x+4}{3}}\right|+C }

  • Att. MatiasHP

  • Gráfico, Assumindo C=0:
  • Tópicos De Resolver Uma Integral:
Anexos:
Perguntas similares