Respostas
Resposta:
Explicação passo-a-passo:
a) (x+2)² = (x+2)(x+2) = x² + 2x + 2x + 4 = x²+4x+4;
b) (2x+3)² = (2x+3)(2x+3) = 4x² + 6x + 6x + 9 = 4x² + 12x + 9;
c) (6x+7y)² = (6x+7y)(6x+7y) = 36x² + 42xy + 42xy + 49y² = 36x²+84xy + 49y²;
d) (x-8)² = (x-8)(x-8) = x²- 8x - 8x + 64 = x² - 16x + 64;
e) (4y-9z)² = (4y-9z)(4y-9z) = 16y² - 36yz - 36yz + 81z² = 16y² - 72yz + 81z²;
f) (10x-11)² = (10x-11)(10x-11) = 100x² - 110x - 110x + 121 = 100x² - 220x + 121;
g) (-2x-5)² = (-2x-5)(-2x-5) = 4x² + 10x + 10x + 25 = 4x² + 20x + 25;
h) (x-9)(x+9) = x² + 9x - 9x - 81 = x² - 81;
i) (7x-15)(7x+15) = 49x² + 105x - 105x - 225 = 49x² - 225;
j) (9y-10)(9y+10) = 81y² + 90y - 90y - 100 = 81² - 100;
k) (x-5)³ = (x-5)(x-5)(x-5) = (x-5)(x²-5x-5x+25) = x³-5x²-5x²+25x-5x²+25x+25x-125 = x³-15x²+75x-125;
l) (3x+4)³ = (3x+4)(3x+4)(3x+4) = (3x+4)(9x²+12x+12x+16) = 27x³ + 36x² + 36x² + 48x + 36x² + 36x + 36x + 64 = 27x³ + 108x² + 120x + 64;